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Abstract Transcriptomics is often used to investigate chang-
es in an organism’s genetic response to environmental con-
tamination. Data noise can mask the effects of contaminants
making it difficult to detect responding genes. Because the
number of genes which are found differentially expressed in
transcriptome data is often very large, algorithms are needed
to reduce the number down to a few robust discriminative
genes. We present an algorithm for aggregated analysis of
transcriptome data which uses multiple fold-change thresholds
(threshold screening) and p values from Bayesian generalized
linear model in order to assess the robustness of a gene as a
potential indicator for the treatments tested. The algorithm
provides a robustness indicator (ROBI) as well as a signifi-
cance profile, which can be used to assess the statistical sig-
nificance of a given gene for different fold-change thresholds.
Using ROBI, eight discriminative genes were identified from
an exemplary dataset (Danio rerio FET treated with chlorpyr-
ifos, methylmercury, and PCB) which could be potential indi-
cators for a given substance. Significance profiles uncovered
genetic effects and revealed appropriate fold-change

thresholds for single genes or gene clusters. Fold-change
threshold screening is a powerful tool for dimensionality re-
duction and feature selection in transcriptome data, as it effec-
tively reduces the number of detected genes suitable for envi-
ronmental monitoring. In addition, it is able to unmask pat-
terns in altered genetic expression hidden by data noise and
reduces the chance of type II errors, e.g., in environmental
screening.
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Introduction

Transcriptomics can be used in environmental screening
for detecting an impact of substances on individuals and
populations from altered gene expression. However, to
enable the full potential of this tool, it is necessary to
develop statistical methods for the detection of indicat-
ing patterns and discriminative genes for pollutants from
gene expression data. Recently, very specific assessment
methods for aquatic organisms have been developed in
order to screen for pollutants and characterize their effects,
esp. on zebrafish (Danio rerio) (Hollert et al. 2003; Höss
et al. 2010; Feiler et al. 2013). Zebrafish embryos have
become a useful model organism in ecotoxicology and
ecotoxicogenomics (Yang et al. 2007; Strähle et al. 2012;
Busquet et al. 2014; Schiwy et al. 2014). Recent research
focused on linking gene expression analysis to current
assessment methods for zebrafish embryos making it
possible to investigate mechanism-specific toxicity at
molecular level (Keiter et al. 2010).
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Detecting genes that show a different expression in com-
parison to a control sample might be the most basic yet most
important step in this task as it allows identifying genes that
respond to a special contamination (Kosmehl et al. 2012). In
ecotoxicology, the challenge of taking the sources of variation
in gene expression into account is an important task, e.g., due
to genetic polymorphism in populations (Denslow et al.
2007). Oleksiak et al. (2002) analyzed genetic variation
among natural populations in several studies, showing that
up to 20 % of the tested genes showed statistically significant
differences in expression at population level in similar
environment.

When handling gene expression data in ecotoxicology, the-
se sources of variability have to be taken into account as they
can mask effects of the tested contaminants (Kerr et al. 2000;
Hallare et al. 2011). Despite the large number of different
technologies for gene expression analysis, data analysis and
the consequent extraction of biological knowledge remain a
major issue of transcriptomics as there is still no gold standard
for transcriptome data analysis up to date (Cordero et al. 2007;
Reboiro-Jato et al. 2014). This often makes the interpretation
of gene expression data subjective, and there is need for tools
to come to an objective conclusion (Yang et al. 2002).
Algorithms with enough statistical power, the ability to un-
mask potential indicator genes and to unhide gene expression
patterns, are needed to obtain biologically relevant results and
reduce the chance for false-negative conclusions (type II er-
ror). In addition, indicator genes must be robust discriminators
to show reproducible expression in multiple experiments
(McCarthy and Smyth 2009).

The large number of tested genes in transcriptome data in
comparison to the usually small sample size makes multiple
testing one of the most dangerous pitfalls in the interpretation
of statistical results (Breitling et al. 2004). Selecting discrim-
inative genes is therefore a critical step for obtaining accurate
and predictive information from gene expression data (Peng
et al. 2014). An advantage of using statistical tests over fold-
change criteria is that one gets a p value as a starting value for
an assessment of the suitability of a gene. However, due to the
large number of genes involved in transcriptome analysis ap-
plying p values is not always straightforward. On a microarray
with 10,000 genes, a significance level of 0.05 would lead to
500 false-positive genes, mistakenly identified as significant
(type I error). One obvious solution would be to consider a
more stringent p value, e.g., by using a false discovery calcu-
lation (FDR; Benjamini et al. 2001). Unfortunately, this may
result in excluding important genes, thereby increasing type II
error. Furthermore, even with a more stringent p value, the
number of discriminative genes provided by the statistical test
of choice has to be further reduced to meet the requirements of
practicability for an environmental screening approach. In
conclusion, to assess the stability of a discriminative gene,
statistical methods are required to reduce the chance of false-

positive detection even when sample size is small and the
overall variation in the data is high due to data noise.

Possibilities to handle these problems are to include only
genes with a fold-change above a certain threshold (double
filtering; Zhang and Cao 2009) or to transform data into bina-
ry or ranked variables (Ding and Hanchuan 2005). However,
this requires the selection of a cut-off value which is arbitrary
without any background information. Similar issues arise for
certain related gene expression analysis like double filtering,
the usage of volcano plots, or functional analyses which de-
pend on fold-change cut-off values.

The aim of this study was to develop an algorithm for
feature selection and statistical pattern recognition in
transcriptomic data. At its core, it is a multi-threshold ap-
proach based on binary variables to handle data noise and high
variability. This algorithm is used to (1) select discriminative
genes from multi-pollutant aggregated microarray data (there-
by reducing the data dimensionality to a manageable set of
variables), (2) assess the statistical stability of selected dis-
criminative genes (giving an idea about uncertainty and indic-
ative power), (3) detect hidden patterns in gene expression for
target contaminants (unmasking effects superposed by data
noise), and (4) reveal appropriate fold-change thresholds for
each gene (enabling use of genes or gene patterns for predic-
tion or classification).

Material and methods

Microarray data and analysis

Fertilized wild-type zebrafish eggs were exposed to three dif-
ferent treatments: methylmercury (mehg), chlorpyrifos
(chlor), and Aroclor 1254 (PCB). As sediments are an impor-
tant sink for a multitude of pollutants, the three substances
were chosen as sediment pollutants often found in combina-
tion in environmental samples (Chapman 2000; Chapman and
Anderson 2005). We used an aggregated approach of analysis
to find discriminating genes in this multi-pollutant context.
The aggregated approach makes it possible to select robust
genes, which have a high discriminative power in the attempt
to distinguish certain contaminants as distinguishing between
specific responses and universal detoxification is often a prob-
lem (Snell et al. 2003; Fedorenkova and Vonk 2010; Kosmehl
et al. 2012). The exposure to the chemicals was performed
from 24 to 48 h post fertilization (hpf). To avoid gene-
specific dye effects, microarrays were replicated with
reverse-labeling to balance green and red dyes. The following
processing of raw data, quality control, and analysis of vari-
ance was done according to the method given in Legradi
(2011). Microarray preparation and analysis were part of the
DanTox project (Keiter et al. 2010). For further details, see
Hausen et al. (2015) and Keiter et al. (2013).
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Fold-change threshold screening: the structure
of the algorithm

The algorithm (see Fig. 1) is performed on microarray data of
each gene in the dataset and was written in R (R Core Team
2014, Version 3.0.2).

Log2 fold-changes are calculated as the logarithmic ratio of
treatment and control spot intensity. To make sure that there
are enough replicates for the following analysis, a missing
value imputation of the fold-change values is applied. Only
genes with at least two replicates for each treatment are
retained. If a single replicate is missing for a treatment, the
median is imputed. This way all genes that passed pre-
selection have the same number of replicates.

The algorithm compares every fold-change with a series of
predefined cut-off thresholds and creates a new binary 0/1
variable for each threshold. Fold-changes lower than the
threshold (or higher in case of a negative threshold) are

transformed to state 0. Basically, the threshold can be seen
as the cut-off beyond which each fold-change is considered
significant (over- or under-expression). Instead of arbitrarily
choosing a cut-off for all genes, fold-change threshold screen-
ing is designed as a step-down algorithm applying multiple
cut-offs. The result of these steps is one binary variable for
each threshold which will be used in further analysis.

Next, a Bayesian generalized linear model (function
bayesglm from the arm package; Gelman et al. 2008) is per-
formed on the binary data with treatment as predictor variable.
In contrast to the default generalized linear model (glm),
Bayesian generalized linear model uses a weakly informative
prior distribution to handle small sample size as well as the
perfect segregation problemwhich naturally occurs in this kind
of data (Lesaffre and Albert 1989; Zorn 2005). To determine
whether including the treatment as predictor has a significant
effect on the model, models with and without predictor (null
models) are compared using analysis of deviance tables (func-
tion anova.glm from the stats package). Subsequently, the next
threshold is chosen as a cut-off value and the fold-changes
are compared to it. Repeating this process for a number of
thresholds, one gains a p value (from the analysis of deviance
chi-squared test) for each of these thresholds.

In the next step, the number of thresholds which lead to
a significant p value is counted. So, for each treatment,
one then gets a number between 0 and the number of
applied cut-off thresholds. This value is called the robust-
ness indicator (ROBI). To be able to compare ROBI in
different experiments, it can be normalized by dividing it
by the number of applied cut-off thresholds so it ranges
between 0 and 1. This value can be used to assess the
robustness of the gene as a discriminator for one of the
tested treatments. Robust genes indicate the same treat-
ment despite changing thresholds. Analysis is also done
with switched signs of all thresholds to test for significant
downregulation of the gene.

To determine which treatment is causing a significant up-
regulation or downregulation, a Tukey post-hoc test is per-
formed on the Bayesian glm results. However, because of
the small sample size, Tukey post-hoc test fails to find signif-
icant differences between the treatments even when the data
are perfectly segregated between the treatment classes.
Therefore, instead of performing post-hoc test on the result
of each threshold separately, post-hoc test is calculated using
the results of all thresholds. For each fold-change, the number
of times the threshold is lower than the fold-change was count-
ed resulting in a binomially distributed variable. With this
variable, it is possible to perform a post-hoc test on the results
of a Bayesian generalized linear model which uses the infor-
mation from all thresholds.

The p values from anova.glm are plotted against the differ-
ent thresholds used. The result is called a significance profile.
Using the significance profile, it is possible to gain an

Fold-change

0/1
Binary variable

Threshold

Bayesian 
generalized linear 

model

Tukey post-hoc test

Repeat mul�ple 
�mes

Gene expression

Robustness 
Indicator (ROBI)

Missing value 
imputa�on

Fig. 1 Flowchart of fold-change threshold screening algorithm showing
all steps performed

Environ Sci Pollut Res



overview of the performance of the gene when different
thresholds are applied, information which ROBI alone cannot
provide.

To evaluate the results from discriminatory statistics and to
verify the membership of extracted discriminative genes for
gene regulation clusters, genes are clustered hierarchically
based on Euclidean distance using Wards clustering method.
Genes and treatments are displayed with distance relative to
their relationship and differential expression illustrated by a
color gradient heat map (Eisen et al. 1998) (heatmap.2 func-
tion from the R-package gplots).

Settings in the present study

In our study, we used the thresholds 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, and 5 (and accordingly −0.5, −1, −1.5, −2, −2.5, −3, −3.5,
−4, −4.5, and −5) as cut-off values. For the ROBI, a p value
below 0.1 was counted once, a p value below 0.05 twice. This
allowed the ROBI to range between 0 and 20. ROBI nor-
malization, as described above, was performed additionally.

Results

From 4298, eight genes were identified as robust while highly
significant discriminative for the treatments applied.
Transformation according to the first threshold (0.5 or −0.5)
done by the algorithm is exemplarily shown for these genes
(Table 1).

For each of the three different chemicals, at least one gene
was chosen as an example of a potential indicator gene. p-
values from the anova.glm performed on the binary values
are given in Table 2.

The robustness indicator (ROBI) was calculated by
counting the number of significant thresholds once
(p<0.1) and highly significant thresholds twice (p<0.05).
As in this study, thresholds from 0.5 to 5 (and −0.5 to −5)

were used; the ROBI could range from 0 to 20. For exam-
ple, for mmp9, the analysis provided six thresholds with
highly significant p values (α<0.05) and one threshold
with significant p values (α<0.1) so the ROBI was 15;
the normalized ROBI would be 0.75.

For mmp13a, every applied threshold provided a highly
significant p value (Fig. 2, left); whereas, krt18 revealed
highly significant effects for four thresholds (1.5 to 3) and
insignificant results when another threshold was applied
(Fig. 2, right).

Nine hundred-thirty genes with a mean fold-change >2 for
at least one treatment were selected to calculate the heatmap
(Fig. 3). The locations of the detected methylmercury indica-
tors from Table 2 (fn1b, socs3a, mmp13a, mmp9, sepw1,
zgc:103438) are marked on the right side. On the left side,
corresponding methylmercury regulation clusters are marked.
This allows detection of gene patterns that were significantly
differently regulated in the presence of at least one of the
different treatments (in this case methylmercury). The chosen
genes that were upregulated form a tight cluster (Bmehg +^)
which corresponds well to the results of our algorithm.

Discussion

Often, analysis of gene expression data starts by creating and
comparing fold-changes for each gene. However, because the
use of fold-changes is no statistical test, there is no value
which can indicate any level of confidence for the genes
being differentially expressed or not (Pavlidis 2003;
Breitling et al. 2004). Therefore, it is necessary to use a sta-
tistical test that is able to detect genes based not only on the
fold-change but also on the reliability of reaching stable re-
sults without the use of a subjectively chosen cut-off thresh-
old (McCarthy and Smyth 2009).

By using a glm-based approach, it is possible to reduce
some of the drawbacks of such a fold-change-based approach

Table 1 Fold-changes of eight
genes selected by fold-change
threshold screening as well as
results of the exemplary
transformation with a threshold
of 0.5

cish fn1b socs3a sepw1 mmp13a mmp9 zgc:103438 itgb1b.2

chlor1 3.24/1 0.55/1 0.94/1 1.22/1 0.29/0 1.65/1 0.24/0 −0.83/1
chlor2 2.14/1 −1.22/0 −0.72/0 0.14/0 0.32/0 0.53/1 −0.51/0 −0.25/0
chlor3 2.69/1 −0.42/0 1.05/1 0.45/0 0.39/0 0.80/1 0.83/1 −0.43/0
mehg1 −0.59/0 6.48/1 10.93/1 −6.57/1 10.91/1 15.30/1 8.51/1 −0.91/1
mehg2 −0.13/0 5.54/1 5.79/1 −4.03/1 5.07/1 8.53/1 7.2/1 −0.71/1
mehg3 −0.86/0 6.12/1 10.51/1 −6.73/1 10.51/1 14.87/1 9.19/1 −0.60/15
mehg4 1.06/1 5.39/1 5.17/1 −5.73/1 5.8/1 7.07/1 3.89/1 −2.19/1
pcb1 −1.93/0 −1.46/0 0.02/0 0.27/0 2.41/1 −0.26/0 0.35/0 −3.38/1
pcb2 −0.28/0 −0.33/0 0.30/0 0.42/0 2.11/1 1.22/1 0.4/0 −3.22/1
pcb3 −0.07/0 −0.99/0 0.58/0 −0.03/0 1.83/1 2.66/1 0.46/0 −3.06/1

For sepw1 and itgb1b.2, ROBI for negative thresholds was greater than the result for positive thresholds.
Therefore, the table shows the transformation with a threshold of −0.5 for sepw1 and itgb1b.2
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and to avoid some statistical pitfalls. An aggregated analysis
allows to compare gene expression of all genes for all treat-
ments simultaneously and to identify genes that discriminate
between these treatments (DeConde et al. 2006). By the ex-
tension of the glm with a Bayesian approach, the intrinsic
problems of small sample size and perfect segregation can
be taken care of (Gelman et al. 2008).

Nevertheless, problems ofmultiple testing and the resulting
large number of statistical significantly regulated genes still
remain. Additionally, data noise can mask the effects of sub-
stances on the gene expression (Hallare et al. 2011). In order to
compensate this, our approach uses both fold-change cut-offs
and binary variables effectively reducing variability within the

data. A problem arising here is to determine which fold-
change cut-off value to choose. Several studies showed the
dependence of the results of transcriptome analysis on the
choice of arbitrary thresholds (e.g., Dalman et al. 2012).
Because of the dependency of the gene expression on a mul-
titude of factors, it is unlikely that there is one fold-change
applicable to all genes of one gene expression study (Lettieri
2005). We found that discriminative genes can be selected
with different thresholds, and these thresholds vary from sub-
stance to substance and even gene to gene. When working
with fold-changes or algorithms that use fold-changes, one
has to keep this arbitrariness of predefined thresholds in mind.
Because there is no way to determine which is the best

Table 2 ANOVA results for the thresholds 0.5–5 for the genes from Table 1

cish fn1b socs3a sepw1 mmp13a mmp9 zgc:103438 itgb1b.2

0.5 0.0352 ** 0.0125 ** 0.1443 0.0089 ** 0.0089 ** 0.3806 0.0125 ** 0.1161 *

1 0.0352 ** 0.0020 ** 0.0125 ** 0.0089 ** 0.0089 ** 0.1681 0.002 ** 0.1161 *

1.5 0.0088 ** 0.0020 ** 0.0020 ** 0.0089 ** 0.0089 ** 0.0812 * 0.002 ** 0.1161 *

2 0.0088 ** 0.0020 ** 0.0020 ** 0.0236 ** 0.0236 ** 0.0154 ** 0.002 ** 0.1161 *

2.5 0.1161 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0154 ** 0.002 ** 0.1161 *

3 0.5082 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.002 ** 0.1161 *

3.5 1 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.002 ** 0.1161 *

4 1 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0317 ** 0.1161 *

4.5 1 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0317 ** 0.1161 *

5 1 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0020 ** 0.0317 ** 0.1161 *

ROBI 8 20 18 20 20 15 20 10

Normalized ROBI 0.4 1 0.9 1 1 0.75 1 0.5

Most significant treatment chlor mehg mehg mehg mehg mehg mehg pcb

Significant and highly significant p values are marked with one or two asterisks and the treatment (chlor, mehg, or pcb) which had the most significant
result in the post-hoc test

*significant; **highly significant

Fig. 2 Significance profiles of two selected genes. Left: matrix
metalloproteinase 13a (mmp13a). Right: Keratin 18 (krt18). On the
x-axis are the different applied fold-change thresholds, on the y-axis

are the p values of anova.glm. Dashed lines mark 10 and 5 %
significance levels
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threshold before analyzing the transcriptome data, using
(uninformed) fold-changes as the only criterion will often fail
to distinguish between detecting the effects of no interests and
referable to contaminants (Draghici 2002). For fold-change
threshold screening, a multi-threshold approach was usedwith
ten different fold-change thresholds (Table 2).

The significance profile in Fig. 2 (left) as well as the ROBI
(Table 2) revealed that there is strong evidence thatmmp13a is
a potential indicator gene for methylmercury. Yang et al.
(2010) showed that methylmercury suppresses the formation
of the tail primordium of D. rerio. From the genes they found
to be significantly expressed under methylmercury treatment,
mmp9 and mmp13a stood out as being strongly upregulated.
They concluded that mmp9 and mmp13a are involved in the
tail development and were regulated when treated with
methylmercury. Ho et al. (2013) examined the changes in
gene expression in the central nervous system that were in-
duced by methylmercury. Again, the genes with strong upreg-
ulation weremmp9 andmmp13a. Both experiments were con-
firmed by real-time PCR. By using fold-change threshold
screening in our study, both mmp9 and mmp13a were among
the most robust and highly significant genes for treatment with
methylmercury. In addition, most of the genes that were found
to be significant by Ho et al. (2013) also had a high ROBI in
our study (e.g., fn1b, see Table 2). These results demonstrate
that fold-change threshold screening is capable of finding ro-
bust and significant genes and providing reproducible results.

The positions of the genes which were selected as potential
indicators for methylmercury were marked in the heatmap

(Fig. 3). With the exception of sepw1, they all form one very
tight cluster which contains genes that are upregulated in the
presence of methylmercury (Bmehg +^ in Fig. 3). This cluster
contains almost exclusively genes that were selected by fold-
change threshold screening. Thus, the algorithm is capable of
reducing the dataset to a very small number of significant
genes or gene patterns. The reason why sepw1 does not be-
long to this cluster is that it is significantly downregulated in
the presence of methylmercury (Bmehg −^ in Fig. 3). It is part
of the cluster at the bottom of the heatmap which contains the
genes that show a negative correlation with methylmercury.

Taking the significance profile of krt18 as an example, it is
possible to use the information of every threshold to determine
a useful fold-change cut-off for any further analysis like GO-
Term analysis (Fig. 2, right). Only when a threshold between
1.5 and 3 was applied, the expression was significantly affect-
ed. The other tested thresholds were far less significant.

Upregulation of keratin 18 (krt18) in the presence of meth-
ylmercury is found in several microarray studies (Nøstbakken
et al. 2012; Cuello et al. 2012). InD. rerio krt18, a member of
type I keratin genes, is strongly linked to the development and
regeneration of scales as well as the dorsal fin (Padhi et al.
2004; Wang et al. 2006). In the case of our study, neither a too
small nor a too big cut-off would have led to a result suggest-
ing that krt18 is a potential indicator for methylmercury. Only
with the help of fold-change threshold screening and the sig-
nificance profile, it is possible to unmask the effect of meth-
ylmercury. Additionally, with the help of the significance pro-
file, it becomes possible to choose fold-change cut-off values

Fig. 3 Heatmap clustering
(Euclidean distance, Ward’s
clustering) of all genes with a
mean fold-change >2 for at least
one treatment using the
heatmap.2 function from the
R-Package gplots (R-Version
3.0.2). Upregulation is colored
green, downregulation red (color
code in the top left). On the right
side, the positions of fn1b, socs3a,
mmp13a, mmp9, zgc:103438, and
sepw1, which reacted
significantly to methylmercury
from Table 2 are marked. On the
left side, the methylmercury
regulation clusters are indicated
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suitable for a certain dataset (or single genes) despite the
strong overall data noise.

An additional interesting gene is cyp1a, which is known to
be an indicator for PCB (Jönsson et al. 2007; Otte et al. 2008).
As in our analysis, cyp1a was significantly differently regu-
lated in the presence of PCB as well as chlorpyrifos, making it
difficult to distinguish between the two of them. However,
using cut-off threshold values up to 10 (instead of up to 5)
for our algorithm, results of the post-hoc test indicated a stron-
ger effect in the presence of PCB, which is in line with results
given in literature.

Conclusions

Because of the large number of tested genes, one problem of
transcriptome analysis is multiple testing and adjusting the
significance level, for example with false-discovery-rate
(FDR). These adjustments always raise the chance for type
II errors (Underwood and Chapman 2003). In ecotoxicology,
overlooking an impact although it is there might result in
collapse of populations and catastrophic outcomes for the eco-
system, which is why in environmental study type II errors are
considered to be more costly than type I errors (Mapstone
1995). For screening the adverse effects of a contaminated
environmental sample on a model organism, it is therefore in
particular important to keep the chance for a type II error low.
Therefore, fold-change threshold screening uses a different
approach to find discriminative genes without reducing the
significance level.

Fold-change threshold screening is an easy to understand
yet powerful algorithm especially suited for aggregated anal-
ysis of gene expression data. It is able to face an important
problem of transcriptome analysis in ecotoxicology, namely to
test the robustness of indicated genes while circumventing the
need for choosing a more or less arbitrary fold-change cut-off
threshold, e.g., functional analysis. By providing a robustness
indicator (ROBI), an indication of the uncertainty and indica-
tive power of each gene can be given. This robustness indica-
tor allows reducing data dimensionality to a manageable set of
variables that can be used in environmental assessment. These
patterns of gene expression (Bfingerprints,^ Bbarcodes^) could
be used as biomarkers identifying relevant toxicants
(Aardema and MacGregor 2002; Yang et al. 2007; Piña and
Barata 2011). With robust indicator genes, the full potential of
transcriptomics can be used. However, data noise, which is
caused by high variability, can often mask the effects of the
treatments. To use gene expression data as measurement and
predictor for pollutant exposure as well as its impact on eco-
systems, it is necessary to unmask these effects. Fold-change
threshold screening is capable of unmasking hidden gene
expression patterns and revealing appropriate fold-change
thresholds for all genes.

As already pointed out, there is no real gold standard for the
analysis of gene expression data up to date, but there are a lot
of options to choose from. Witten and Tibshirani (2007) have
shown that the chosen method will have great impact on the
set of genes which is selected. They furthermore conclude that
the choice of method should be based on the biological system
of interest. Fold-change threshold screening was created espe-
cially for aggregated analysis of gene expression data from
D. rerio in ecotoxicology. Most studies select genes from a
huge number of highly significant genes which they know
beforehand could be biologically relevant based on functional
a priori knowledge. In contrast, our approach is capable of
detecting discriminative genes without a priori information
needed. Thus, it is a strong tool for dimensionality reduction
as well as feature selection, two main goals of statistical pat-
tern recognition.

In our study, we combined microarray data for three
sediment-typical contaminants in an aggregated data set, ana-
lyzed simultaneously. We propose this approach as a powerful
tool to detect contamination of simultaneously occurring pol-
lutants and it can thus be a potential tool in ecotoxicological
sediment screening, although it is possible to use it with other
transcriptome data.
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