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Abstract Inecotoxicology, transcriptomics is aneffectiveway to
detect gene expression changes in response to environmental pol-
lutants. Such changes can be used to identify contaminants or
contaminant classes and can be applied as early warning signals
for pollution. To do so, it is important to distinguish contaminant-
specific transcriptomic changes from genetic alterations due to
general stress. Here we present a first step in the identification of
contaminant class-specific transcriptome signatures. Embryos of
zebrafish (Danio rerio)were exposed to three substances (methyl-
mercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf
exposed) representing sediment typical contaminant classes. We
analyzed the altered transcriptome to detect discriminative genes
significantly regulated in reaction to the three applied contami-
nants. By comparison of the results of the three contaminants, we
identified transcriptome signatures and biologically important
pathways (using Cytoscape/ClueGO software) that react signifi-
cantly to the contaminant classes. This approach increases the
chanceof findinggenes that play an important role in contaminant
class-specific pathways rather thanmore general processes.

Keywords Transcriptomics .Methylmercury . Aroclor
1254 . Chlorpyrifos . Ecotoxicogenomics . Pathway network
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Introduction

Inenvironmental sciences, transcriptomic techniques likemicro-
arrays allow a comprehensive analysis of an organism’s molec-
ular response to contaminant exposure, diseases, and changes in
theexternal environment.Enabling the studyof largenumbersof
genes at the same time, these methods have become powerful
tools for transcriptome profiling and led to the development of
(eco)toxicogenomics (Snape et al. 2004; Lettieri 2006;
Fedorenkova andVonk2010). Snell et al. (2003) pointedout that
oneway to advance ecotoxicogenomics is to detect certain genes
that are significantly regulated in response to contaminant expo-
sure, characterize those genes, and use them to identify stressors.
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At present, only a few existing bioassays on aquatic organ-
isms are able to measure molecular or mechanism-specific ef-
fects and to display bioavailable hazard potential of pollutants
(Hollert et al. 2003; Schiwy et al. 2014; Garcia-Käufer et al.
2015). Zebrafish (Danio rerio) is increasingly used in ecotoxi-
cological screening and profiling (Höss et al. 2010; Feiler et al.
2013) and represents a prominent and genetically well-
characterized organism. In addition, zebrafish is one of only a
few fish species whose genomes are sequenced and publically
availableandwhosegenefunctionsarewellknowndue toa large
number of experimental studies on gene knockout and expres-
sion profiles (VanAggelen et al. 2010; Howe et al. 2013). Thus,
the usage ofD. rerio transcriptomics in ecotoxicological studies
can provide information regarding the genetic regulation and
adaptation of this organism exposed to changing environmental
conditions (Keiter et al. 2010; Braunbeck et al. 2015).

It was already shown that certain contaminants cause
barcode-like responses on transcriptome level, which can be
used to distinguish between these substances (Lettieri 2006;
Yang et al. 2007). Specific genes or transcriptome signatures
are claimed to be used as early warning signals for pollution
(Bartosiewicz et al. 2001; Snell et al. 2003; Fedorenkova and
Vonk 2010). However, previous studies using microarrays to
examine the effects of contaminant exposure on an organism
were mostly conducted on single substances. This limits the
explanatory power because it is hard to distinguish genes or
pathways that react specifically to the tested components from
those involved in general stress responses or systemic toxicity
(Kosmehl et al. 2012). The latter can be expected to react to
any kind of contaminant and are therefore not suitable for an
identification of contaminant class-specific mechanisms.

The aim of this study was to find variations in gene expres-
sion of zebrafish embryos after exposure to different contam-
inant classes and to identify specific transcriptome signatures.
Detecting genes and pathways that reliably identify contami-
nant classes is instrumental for a successful integration of
ecotoxicogenomics into ecotoxicology. In addition, this can
be a starting point for the investigation of molecular mecha-
nisms and the definition of modes of action of environmental
contaminations.

We conducted a comparison of the gene expression profiles
for three relevant contaminants. Thus, we performed tran-
scriptome analyses with zebrafish embryos to identify genes
and pathways expressed significantly different for each con-
taminant. The transcriptome was analyzed after 48 h post-
fertilization (hpf) exposure to three model compounds (chlor-
pyrifos, methylmercury, and Aroclor 1254 as a technical PCB
mixture), which had been selected as representatives of com-
mon classes of environmental contaminants. Particularly, they
can be found in aquatic sediments where they cause specific
effects in aquatic organisms. Methylmercury was selected as a
representative of heavy metals. Methylmercury exposure has
been shown to cause various cellular changes including lipid

peroxidation, DNA damage, membrane structure alteration,
mitochondrial dysfunction, cell cycle alteration, apoptosis,
and necrosis (Clarkson and Magos 2006). Chlorpyrifos be-
longs to the group of organophosphate pesticides, which are
widely used in agriculture today (Uzun and Kalender 2013).
Both methylmercury and chlorpyrifos are known to cause
neurotoxic effects in zebrafish (Whitney et al. 1995; Hassan
et al. 2012; Ho et al. 2013). Aroclor 1254 is a mixture of
polychlorinated biphenyls and represented persistent organic
pollutants in this study. It affects several specific pathways
(e.g., CYP450 metabolism, endocrine system) and causes
morphological defects in developing zebrafish (e.g.,
pericardial edema; Hahn 2001; Jönsson et al. 2007).

Material and methods

Chemicals

Chemicals used for exposure were methylmercury (CAS 115-
09-3; 60 μg/l), chlorpyrifos (CAS 2921-88-2; 7 mg/l in 0.01%
ethanol), and Aroclor 1254 (CAS 11097-69-1, lot: LB 68958;
71.9 mg/l in 0.01% ethanol). All chemicals were purchased
from Sigma-Aldrich, MO, USA.

Exposure

Wild-type zebrafish embryos (strains AB and ABO) were
harvested, sorted for proper development, and exposed to
three different chemicals and the controls at 28 °C from
24 to 48 hpf. Eggs were not dechorionated. Controls were
done in embryo water (60 μg/ml Instant Ocean, Red Sea,
Houston, TX, USA, pH 6.73, Ca 0.8 mg/l; K 0.6 mg/l;
Mg 2 mg/l; Na 16 mg/l; S 2 mg/l; Westerfield 2000)
separately for the exposure scenario to methylmercury
and in 0.01% ethanol for the exposure scenario to chlor-
pyrifos and Aroclor 1254. To define the concentration,
which was used for the microarray experiments, the em-
bryos were transferred to control medium (ISO water)
until 96 hpf. The microarray test concentration was then
determined as the EC50 at 96 hpf. For the microarray
experiments, the embryos were collected at 48 hpf
(Yang et al. 2007). Only embryos that did not show any
visual malformations were used for the microarray exper-
iments. Each exposure and corresponding control was
done at least three times individually and was subsequent-
ly processed independently in the microarrays. This ap-
proach allowed accounting for possible batch effects in
single samples. For each sample, approx. 50 embryos
were pooled. After exposure, the embryos were shock-
frozen in liquid nitrogen and stored at −80 °C.
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Microarray

For total RNA extraction, 1.5 ml Trizol Reagent (Life
Technologies) was added and the embryos were homogenized
using a disperser usingRNeasyMiniKit (Qiagen; seeYang et al.
2010). Subsequent steps were carried out according to the man-
ufacturer’s instructions. After phase separation, RNA precipita-
tion and washing, the pellet was dissolved in 20 μL RNase-free
water. The integrity of total RNAwas checked on a denaturing
agarose gel. The 28S ribosomal RNA (rRNA) and 18S rRNAof
all samples appeared as two bands with an approximate ratio of
2:1.Concentrationsandthe260/280absorbanceratiosweremea-
sured with a NanoDrop spectrometer (Thermo Scientific,
Wilmington, DE, USA). Samples below a ratio of 1.6, hence
contained protein impurities, were discarded.

The two-color microarray design was based on the zebrafish
genome 4 × 44 k chip version 2 by Agilent (Agilent
Technologies, USA). To avoid gene-specific dye effects, the ex-
perimentwas replicatedwith reverse labeling (dye-swap) to bal-
ance the green and red dyes. The two microarrays with reverse-
labeled probeswere regarded as technical replicates.Chemically
exposedandcorrespondingcontrol embryoswerecomparedand
measured in triplicate repeats of the exposures. The assay was
performed according to Agilent Low RNA Input Linear
Amplification Kit Protocol (Agilent Technologies). In brief,
2μgof totalRNAfromeachsamplewas reverse-transcribed into
complementary DNA (cDNA). Complementary DNA (cRNA)
was transcribed from the cDNA and labeled with Cyanine3
(Cy3)-CTP and Cy5-CTP fluorescent dyes (Agilent
Technologies). The cRNA samples were purified with the
RNeasy Mini Kit and fragmented. The probes were put on the
coverslipsandchips,wereplacedinhybridizationchambers,and
incubated at 42 °C for 16–18 h, according to the manufacturer’s
protocol. For technical reasons, replicates for at least one expo-
sure scenario (three biological replicates × two technical repli-
cates) were handled in one run. Arrays were scanned using the
Axon model 4000B dual-laser scanner and the corresponding
GenePixPro 6.1 software (Axon, Union City, CA, USA). Both
channels (532 nm for Cy3 and 635 nm Cy5) were scanned in
parallelandstoredas16-bitTIFFfiles.Thescanswereperformed
with a resolution of 5μm. Each array was scanned with an opti-
mized signal amplification factor (voltage settings of the
photomultiplier tubes). The channels for Cy3 andCy5were bal-
anced in each scan for approximately the same intensity profile.
The microarray data were submitted to Gene Expression
Omnibus (GEO) with the accession number GSE88703
(Aroclor 1254), GSE88704 (chlorpyrifos), and GSE37970
(methylmercury).

Data analysis

The signal intensity information was extracted from the array
images by the GenePix software according to the procedure

provided by the manufacturer (Molecular Devices, CA, USA).
After opening the TIFF image and loading the array list file, a
grid with information to all spots was laid on the image data.
The image information was extracted from every spot and
transferred to a gpr-file with parameters, such as foreground
and background pixels and Cy5 (532 nm) and Cy3 (635 nm)
intensities. Background fluorescence occurs due to non-
specific binding and should be corrected. The following pro-
cessing of raw data, quality control, and analysis of variance
was done according to the method described by Legradi
(2011). In brief, raw data (i.e., fluorescence intensities of
spots) were log transformed and normalized before statistical
analysis. Differences in gene expression were represented as
the differences between channels, M = log2 (yred) − log2 (y-
green), y = spot intensity. Systematic multiplicative error terms
become additive and are automatically eliminated by
subtracting the channel intensities. Spots with bad quality
were removed from the dataset prior to further analysis. MA-
plots (not shown) were used for quality control where M rep-
resents the log ratio of raw intensities (log2 (yred) − log2 (y-
green) = log2 ygreen/log2 yred) and A represents the average ex-
pression level of the spot (log2 (yred + ygreen)/2). Log2 fold-
changes were calculated as mean ofM values of both technical
replicates (dye-swaps). The data were normalized by a chip
wide analysis and a locally weighted regression smoother
(LOESS). Gene-specific standard error and global standard
error among all genes were weighted to account for the small
sample size.

After aggregation of the normalized log2 fold-changes
from all three treatments, statistical quality criteria were ap-
plied. Pre-selection of fold-changes was applied to ensure that
at least two fold-change values for each treatment were includ-
ed in the analysis. If there was a missing value for one treat-
ment, the group median was imputed. Only genes with a mean
absolute fold-change of at least 1 were selected for further
analysis. Genes were grouped by treatments, with each group
containing all genes with a mean absolute fold-change for the
group treatment of at least 1.

The normalized log2 fold-change datasets were subjected to
ANOVA to detect significantly differently expressed genes after
Levene’s test had been performed to test for equal variances be-
tween the classes. A linear model was fitted to the data to check
whether gene expression after exposurewas actually significant-
ly different from the control (Smyth 2004). Genes that passed all
three statistical criteria (fold-change, ANOVA, linear model)
were considered discriminative and used in pathway network
analysis. An overview of the statistical analysis is given in
Fig. 1. All analyses were performed using routines from the R
statistical package (version 3.1.2).

A volcano plot (Li 2012) was used to depict (log2) fold-
changes against ANOVA log10 p values. Volcano plots provide
the possibility to combine fold-changes and ANOVA signifi-
cance results. The mean fold-change was calculated for each
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geneand for all three treatments separately.Thisway, eachgene
provided three mean fold-changes. This enabled the examina-
tion of genes based on their variance and overall change in
expression. In the volcano plot, each x value corresponded to
the highestmean fold-change of a treatment group.Data points
were colored according to the treatment group of which the
corresponding genes were also significant according to linear
regression.Non-discriminative (i.e., genes not taken forward in
the analysis) geneswere colored gray. Lines indicating a signif-
icance levelofα=0.05 (horizontal) and fold-change thresholds
of 1 and −1 (vertical) were added to the plot. These lines divide
the genes of the volcano plot into four groups A, B, C, and D.
Genes with a high fold-change and low p values in the volcano
plot were considered most relevant (group A). Genes with a
fold-change below a certain threshold were neglected even de-
spite significant p values (group B) because in this case, the
expression change is considered too small to have a biological
impact (McCarthy andSmyth 2009). In addition, geneswith an
insignificant p value but large fold-changes were rejected, as
these may have been influenced by high variance in the data
(group D; Dalman et al. 2012; Xiao et al. 2014). The volcano
plot was created using the R-package ggplot2.

Discriminative genes of all treatments were clustered hier-
archically based on Euclidean distance and Ward’s clustering
(using the heatmap.2 function from the R-package
gplots) to create a color-scaled heatmap (Eisen et al.
1998; Murtagh and Legendre 2014). Clustering distance and
algorithm are both proven to show good results for microarray
data (Freyhult et al. 2010; Giancarlo et al. 2010). The heatmap
visualized the relative expression and grouping of the discrim-
inative genes across the different chemicals treatments and
replicate arrays.

Pathway network analysis was performed using the dis-
criminative genes, which were selected by the statistical
criteria, to identify enriched functional ontology terms using
Cytoscape plugin ClueGO 2.1.7 (Bindea et al. 2009). Gene
ontology (GO) databases for biological processes, molecular
functions, immune system processes, and cellular components
were used for gene annotation (databases from October 05,
2015). GO tree interval was set to range from 3 to 8, the
minimum number of genes per cluster was 2. Only significant-
ly enriched terms were selected using right-sided
hypergeometric tests with Benjamini-Hochberg correction
(p < 0.05). The resulting network was drawn with a kappa
score (minimum connectivity of the network) of 0.4 U. The
analysis was carried out independently for each treatment,
with up- and downregulated genes in separate clusters. To
distinguish between up- and downregulated gene clusters
within the terms, nodes were colored blue for up- and red
for downregulation. Nodes with both up- and downregulated
genes were colored gray. Node size was determined by the
significance of enrichment, while edge width refers to kappa
score of the connection. The same analysis was also done
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database. For better visibility, labels were
edited using Inkscape 0.91.

Results

Differentially expressed genes

From initially over 14,000 genes, 4298 passed the statistical
quality criteria. Only genes showing a mean log2 fold-change
of at least +1 respectively −1 for at least one treatment were
used in ANOVA. These genes were divided into three groups
according to the treatment that inflicted the highest absolute
mean fold-change. Results of Levene’s test indicated that only
128 genes showed unequal variance (p < 0.05). This
corresponded to less than 5% of all genes, and thus, we as-
sumed equal variance. Genes for which the result of the
ANOVA indicated a significant difference in expression for
one of the three treatments were considered discriminative
genes. This was done to separate them from genes involved
in general stress responses, which tend to show differential

Raw data

Pre-processing

Calculate log2 fold-change from 
control and treatment

Genes with mean 
fold-change 

(chlorpyrifos) > 1

Genes with mean 
fold-change 

(methylmercury) > 1

Genes with mean 
fold-change 
(Aroclor) > 1

ANOVA

Linear modell (limma)

Pathway network analysis 
(Cytoscape/ ClueGo)

Fig. 1 Overview of the statistical analysis
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regulation in any chemical treatment. Such non-discriminative
genes were excluded from the following analysis.

The remaining genes were tested for significantly different
expression (according to linear regression, α < 0.05) from the
control expression values for each of the three chemical treat-
ments separately. After the three filtering steps, namely fold-
change cutoff, ANOVA, and linear regression, the remaining
312 genes were used for further analysis.

Overall, more genes were found significantly downregulat-
ed than upregulated (185 down, 127 up). Most genes were
altered in their expression by methylmercury (148 genes,
47.4% of all genes); fewer genes were significantly influenced
by Aroclor 1254 (122 genes, 39.1%) and the least by chlor-
pyrifos (42 genes, 13.5%). For methylmercury, 64% of the
significantly regulated genes were downregulated; for
Aroclor 1254, it was 54% and for chlorpyrifos 64%. The
genes matrix metalloproteinase 9 (mmp9) and selenoprotein
W, 1 (sepw1) showed the highest respectively lowest fold-
changes of all genes (mmp9 = 11.4-fold; sepw1 = −5.8-fold),
both in response to methylmercury (Table 1). Another matrix
metalloproteinase (mmp13a; 8.1-fold) alongside jun B proto-
oncogene (junb; 5.8-fold) and jun B proto-oncogene, like
(junbl; 4.7-fold) were also significantly upregulated following
methylmercury exposure. For exposure following chlorpyri-
fos, up- or downregulation of genes was overall not as strong

as following the other two contaminants. Annexin A1b
(anxa1b; 3.9-fold) and cytokine inducible SH2-containing
protein (cish; 2.69-fold) were the most highly and significant-
ly expressed genes. Among the significant genes following
exposure to Aroclor 1254, cytochrome P450, family 1, sub-
family A (cyp1a) stood out as being the strongest upregulated
gene by far (7.9-fold).

Volcano plot and heatmap

Avolcano plotwas drawn to visualize themain characteristics of
the transcriptome response (Fig. 2) in terms of response strength
andregulation.Genes located in theupper rightand leftquarterof
theplot (Fig. 2,groupA)havebotha largemean fold-changeand
a small p value. Genes clustered at the bottom center of the plot
(groupC)have insignificantpvaluesandsmallmeanfold-chang-
es. Genes in group B have also small mean fold-changes but
significant p values while genes in group D have insignificant
p values and largemean fold-changes.

Theheatmap (Fig. 3)wasused to translate fold-changes into a
color code to facilitate the detection of gene expression patterns
and contaminant class-specific transcriptome signatures. Gene-
wise hierarchical clustering formed three distinct clusters, corre-
spondingtothethreetreatments.Withintheseclusters,patternsof
up- and downregulated genes can be found unique to each

Table 1 Most highly expressed
genes for each of the three
treatments

Gene symbol Gene name Mean fold-change

chlor mehg pcb

Chlorpyrifos

anxa1b* Annexin A1b 3.88 −0.19 −0.31
gc Vitamin D binding protein −2.84 −0.62 −0.53
cish* Cytokine inducible SH2-containing protein 2.69 −0.13 −0.71
sec61g Sec61 gamma subunit 1.98 0.92 0.66

ndufa2* NADH dehydrogenase (ubiquinone) 1
alpha subcomplex, 2

1.95 −0.05 0.18

Methylmercury

mmp9* Matrix metalloproteinase 9 0.99 11.44 1.2

socs3a* Suppressor of cytokine signaling 3a 0.42 8.1 0.3

mmp13a* Matrix metalloproteinase 13 0.33 8.08 2.12

zgc:103438* si:dkey-228a15.1 0.18 7.2 0.4

socs3b* Suppressor of cytokine signaling 3b 0.67 6.67 0.93

Aroclor 1254

cyp1a* Cytochrome P450, family 1, subfamily A 3.57 0.43 7.9

fkbp5* FK506 binding protein 5 −2.46 1.14 −3.82
itgb1b.2* Integrin, beta 1b.2 −0.50 −1.1 −3.22
tnni2b.1* Troponin I, skeletal, fast 2b.1 −1.01 −0.15 2.96

mat1a* Methionine adenosyltransferase I, alpha −0.65 −0.5 −2.89

Fold-changes of the genes for each treatment are shown. List includes five genes with highest absolute fold-
changes for each treatment (mehg = methylmercury, chlor = chlorpyrifos, pcb = Aroclor 1254). Genes marked
with an asterisk are significant according to ANOVA.
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treatment and suitable to distinguish them. Methylmercury in-
duced a more distinct expression profile, which is clearly sepa-
rated from chlorpyrifos andAroclor 1254. Gene expression pat-
terns of chlorpyrifos andAroclor 1254 are partially similar but at
least one pattern can be used to distinguish each treatment from
the other.Additionally, there are no gene patterns similar in reac-
tion toall treatments, indicating the initially intendedexclusionof
general stress-related genes.

Pathway network analysis

Significantly regulated genes were subjected to a pathway net-
work analysis to identify functional enrichment. For methylmer-
cury (Fig. 4), more red than blue nodes indicated a stronger over-
representation of downregulated than upregulated genes among
the significant functional terms. Downregulated GO-groups
(groups of two or more connected terms) were appendage mor-
phogenesis, chloride channel activity, fructose 2,6-bisphosphate
metabolic process, nucleophagy, protein peptidyl-prolyl

isomerization, and regulation of target of rapamycin (TOR) sig-
naling. The only significant GO-group composed of mostly up-
regulated geneswas smallmolecule catabolic process. For lists of
all over-represented GO-groups and contained functional terms,
see Additional file 1.

The exposure to Aroclor 1254 (Fig. 5) resulted in downregu-
latedgeneswhichweresignificantlyover-represented in theGO-
groups histone acetyltransferase complex, intracellular protein
transmembrane transport, protein folding, and protein import
into mitochondrial matrix. Upregulated by Aroclor 1254 were
autophagosome and response to hypoxia. Many of the Aroclor
1254 exposure-enriched terms were mitochondrion-related and
downregulated (mitochondrial membrane organization, mito-
chondrial transmembrane transport, protein targeting to mito-
chondrion, protein localization to mitochondrion, and establish-
ment of protein localization to mitochondrion).

Results of the pathway network analysis for chlorpyrifos
(Fig. 6) showed fewer (8 terms) over-represented terms than
the other two treatments (methylmercury, 60 terms; Aroclor

group Dgroup D

group Agroup A

group C

group B

0

2

4

6

8

− 01505

log2 fold−change

−
lo

g1
0 

p−
va

lu
e

Fig. 2 Volcano plot of the microarray data from all three treatments. The
horizontal x-axis depicts the highest group mean fold-change; the vertical
y-axis shows the statistical ANOVA significance. Larger values on the
vertical axis represent larger statistical significance. Points were colored
according to the (treatment) group. Blue indicates genes that showed the
highest mean fold-change after exposure to methylmercury, green to

Aroclor 1254, and red to chlorpyrifos. Non-discriminative genes were
colored gray. The horizontal line corresponds to the ANOVA cutoff p
value of 5%; the vertical lines correspond to a fold-change of 1 and −1.
The genes were divided into four groups A, B, C, andD, according to the
horizontal and vertical lines. Volcano plot was drawn using the R-
package ggplot2 (R-version 3.1.2)
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1254, 46 terms). These terms were significantly over-
represented (α < 0.05) by downregulated genes. They
belonged to the GO group coagulation, DNA packaging com-
plex, and anion channel activity.

Alternatively, KEGG pathway analysis detected substan-
tially less significantly enriched nodes than GO. The exposure
to methylmercury significantly changed the expression of
genes in the KEGG pathways peroxisome proliferator-
activated receptors (PPAR) signaling pathway and fatty acid
degradation (both downregulated). For Aroclor 1254 peroxi-
some (downregulated), retinol metabolism and nicotinate and
nicotinamide metabolism (upregulated) were significantly
enriched KEGG pathways. No KEGG pathways were signif-
icantly changed following exposure to chlorpyrifos.

Discussion

In the present study, we analyzed the microarray experiments
first separately for each of the three chemicals and calculate
gene fold-changes using corresponding controls (baseline) for
each treatment. ANOVA was then performed on the fold-
change data of all three treatments instead of pairwise t statis-
tics to prevent error accumulation due to multiple testing

(Churchill 2004). This way, it was possible to detect tran-
scriptome signatures that were contaminant class-specific.

Volcano plot

By depicting the results of all three contaminants in the vol-
cano plot, the highest fold-changes and thus the strength of the
reaction of the whole zebrafish genome could be assessed in
parallel. According to the number of colored points in group
A, the strongest gene response was induced by the exposure to
methylmercury (blue points, Fig. 2) while chlorpyrifos pro-
voked the weakest response (red points).

The densest accumulation of points occurred, as expected,
in group C. However, many genes (compared to the number of
genes of group A) fell into group D or B. These genes showed
either large fold-changes with insignificant p values (D) or
small fold-changes with significant p values (B). These results
can be explained by the fact that we performed an ANOVA,
which allowed us to compare the results from all three treat-
ments simultaneously. All three contaminants influenced
genes in group D, explaining the lack of significant difference
despite the comparatively large fold-change values in compar-
ison to the treatment corresponding controls. The fold-
changes did not result in significant ANOVA p values since

chlor2

chlor1

chlor3

pcb1

pcb3

pcb2

mehg4

mehg2

mehg1

mehg3

−
2

−
1

0
1

2

R
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 Z
−

S
core

C
o
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r K

ey
Fig. 3 Heatmap-clustering
(Euclidean distance, Ward’s
clustering) of all discriminative
genes. Upregulation is depicted in
blue, downregulation in red
(according to fold-change; color
code in the top right). Genes are
clustered on the left; replicated
arrays for the three treatments on
top (chlor chlorpyrifos, mehg
methylmercury, pcb Aroclor
1254). The heatmap was
calculated using the heatmap.2
function from the R-Package
gplots (R-version 3.1.2)
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these genes were equally differentially expressed in all three
treatments. This most likely applies to genes involved in more
general processes such as detoxification. The challenge to
distinguish these genes from the ones involved in more spe-
cific response pathways, common to gene expression analyses
(Kosmehl et al. 2012), was met by our analysis. It allowed us
to filter out genes, which are unsuitable as discriminators for
specific contaminant classes.

If a gene hardly responded to one of the treatments but
strongly to both other treatments, this gene was classified into
group B as being significantly differently exposed. Using a
post-hoc test here would lead to a wrong conclusion, indicat-
ing that the treatment, to which the gene had not responded to,
was the most relevant. Using a fold-change cutoff and a linear
model, we considered this negative indication and avoided
this potential issue.

According to the linear model, some genes were not iden-
tified as discriminative despite significant difference accord-
ing to ANOVA and an above threshold fold-change for one of
the treatments. These genes occurred as gray points in group
A. Genes of group B which showed a weak but significant
response to one treatment but a small gene expression vari-
ance in the other two treatments were considered to be of

limited importance for a pathway network analysis.
Nevertheless, despite the small variance (resp. sensitivity) in
response to a treatment, they could still be discriminative for
this contaminant class. Pavlidis (2003) showed that small
fold-changes can be important in a certain biological context.
For example, when investigating gene expression in the ner-
vous system, small changes are often more relevant than in
other parts of the organism. Therefore, it is not recommended
to use a common fold-change threshold for different experi-
ments. The volcano plot can help identifying patterns or
groups and picking relevant genes. Therefore, it can be a good
quality control measure to the results of the statistical tests.

Pathway network analysis

All over-represented pathways (terms) for chlorpyrifos
contained downregulated genes. The number of genes, which
were differentially expressed, was significantly lower than for
the other two treatments. Chlorpyrifos is known to inhibit
acetylcholinesterase (ache), which is important in neurotrans-
mission as it hydrolyzes acetylcholine to choline and acetate
thereby terminating synaptic transmission (Straus and
Chambers 1995; Kwong 2002). It was already shown that

Fig. 4 Pathway network of significantly over-represented GO-terms
following treatment of methylmercury. Nodes represent significantly
differentially expressed genes that are similar in function; edges
represent pairwise interactions. Red nodes include downregulated
genes; blue nodes depict upregulated genes. Gray nodes were not
especially over-represented. Functional groups with less than three
nodes are labeled with a number: 1 = small molecule catabolic
process, 2 = chloride channel cell chemotaxis , 3 = cell

chemotaxis, 4 = transition metal ion homeostasis, 5 = positive
regulation of response to external stimulus, 6 = retinal ganglion
cell axon guidance, 7 = response to toxic substance, 8 = sodium
ion transport, 9 = cellular aldehyde metabolic process, 10 =
dicarboxylic acid transmembrane transporter activity; 11 =
metalloendopeptidase activity. A list of all over-represented terms,
as well as the same figure with all labeled terms, is provided in
Additional file 1
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acetylcholinesterase is critical for the neuronal development
of zebrafish (Behra et al. 2002). In contrast to our expectation,

a significant upregulation of ache to compensate the inhibition
of the enzyme by chlorpyrifos was not detected. This may be
attributed to low uptake and reduced metabolism of chlorpyr-
ifos by the embryos as proposed by Legradi (2011). Yang et al.
(2011) could not detect an effect on ache activity after chlor-
pyrifos exposure from 24 to 48 hpf. However, they found a
change in ache activity after exposure to chlorpyrifos-oxon, a
metabolite of chlorpyrifos. On protein level, also no effects on
ache after chlorpyrifos exposure during the first 24 h of de-
velopment were seen (Liu et al. 2015). When exposed from
6 hpf to 5 dpf, significant ache activation can be observed
(Yen et al. 2011) indicating that chlorpyrifos is only inhibiting
ache activity after 48 hpf. This might have to do with the
minimal metabolic capability of the embryo prior 48 hpf.
Chlorpyrifos needs to be bioactivated via transformation into
its oxon form. An explanation for the overall low number of
significant genes and pathways might be that the exposure
time was too short, and chlorpyrifos was not present as acti-
vated chlorpyrifos-oxon (Yang et al. 2011).

In a recent study, Lewis et al. (2014) showed that cish, which
can be found in the group of the significantly regulated genes for
chlorpyrifos (Table 1), has a key function in the embryonic he-
matopoiesis. In particular, theyobserved enhanced embryogenic
erythropoiesis,myelopoiesis,andlymphopoeisis inmorpholinos

Fig. 5 Pathway network of significantly over-represented GO-terms
following treatment of Aroclor 1254. Nodes represent significantly
differentially expressed genes that are similar in function; edges
represent pairwise interactions. Red nodes include downregulated
genes; blue nodes depict upregulated genes. Gray nodes were not
especially over-represented. Functional groups with less than three

nodes are labeled with a number: 1 = integral component of
endoplasmic reticulum membrane, 2 = negative regulation of cell cycle
process, 3 = integrin-mediated signaling pathway, 4 =mitochondrial outer
membrane, 5 = metalloendopeptidase activity, 6 = transition metal ion
transport. A list of all over-represented terms, as well as the same figure
with all labeled terms, is provided in Additional file 1

Fig. 6 Pathway network of significantly over-represented GO-terms
following treatment of chlorpyrifos. Nodes represent significantly
differentially expressed genes that are similar in function; edges
represent pairwise interactions. Red nodes depict downregulated genes.
No terms with upregulated genes were significantly enriched. A list of all
over-represented terms, as well as the same figure with all labeled terms,
is provided in Additional file 1
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targeting cish. Hematotoxicity is one of many known toxic ef-
fects of chlorpyrifos (Uzun and Kalender 2013). However, be-
sides the alteration of the production of reactive oxygen species
(ROS), little is known about the underlying mechanism of this
effect (Demir et al. 2011). The downregulation of cish could be a
possible mechanism of chlorpyrifos-induced hematotoxicity.
One explanation for the overall low number of significantly reg-
ulated genes and pathways might be due to the exposure during
the first 2 days of embryogenesis, in which embryos are still
protected by the chorion and, in addition,might lack the capacity
tometabolizechlorpyrifos to themore toxicchlorpyrifos-oxonas
suggested byYang et al. (2011).

As for methylmercury, several significantly enriched terms
were related to fin morphogenesis including embryonic pectoral
fin morphogenesis (downregulated), embryonic appendagemor-
phogenesis (downregulated), and fin regeneration (upregulated;
Fig. 4) suggesting an effect ofmethylmercury on the fin develop-
ment ofD. rerio. Yang et al. (2007, 2010) proved in two studies
thatmethylmercury causes the suppressionof the tail primordium
of zebrafish embryos. The authors conducted microarray experi-
ments with multiple contaminants in 2007 and further
characterized the mechanism of action of methylmercury
morphologically in addition to using in situ hybridization in
2010. They used concentrations of methylmercury and exposure
times similar to this study. The developmental toxicitywas linked
to tissuedamageanddisturbanceof thecellularhomeostasisof the
fin fold. Yang et al. (2010) found that instead of forming a clear,
fan-shaped find fold, the membrane surrounding the tail was
smaller and less structured. These results were in line with other
studies describing appendage malformations following methyl-
mercuryexposure (SamsonandShenker2000;Keiter et al. 2013).

Following exposure to methylmercury, we expected
metalloproteases to be upregulated. Yang et al. (2010) found
a strong upregulation of two matrix metalloproteases (mmp9
and mmp13) in combination with the modified development
of the fin fold and the tail fin primordium, corroborating the
hypothesis of an impairment of fin development by methyl-
mercury. The current study confirmed the results on mmp9
and mmp13 which were 11.4- and 8.1-fold upregulated after
exposure tomethylmercury (Table 1). Both genes were among
the genes showing the strongest change in expression of all
tested genes. Following exposure to chlorpyrifos or Aroclor
1254, the two genes did not show comparable induction levels
(chlorpyrifos: mmp9: 1.0-fold, mmp13: 0.3-fold; Aroclor
1254: mmp9: 1.2-fold, mmp13: 2.1-fold). These results are
in accordance with both studies of Yang et al. (2007, 2010).
In 2007, the authors found mmp9 to be upregulated 6.7-fold
and mmp13 5.9-fold in their microarray analysis. By using
whole-mount in situ hybridization, they were able to link this
upregulation to the effects on the tail fin primordium in their
later study (Yang et al. 2010). Their results indicated that
misregulation of mmp9 and mmp13 leads to tissue damage
in the fin fold as metalloproteases could play a role in tissue

regeneration (Bai et al. 2005). In this study, we suggest that
within the range of the chemicals, tested mmp9 and mmp13
serve as useful discriminative genes to identify the effect of
methylmercury.

Moreover, junb and junb-like (junbl) were upregulated fol-
lowing methylmercury exposure: junb 5.8-fold and junbl 4.7-
fold. Ho et al. (2013) found comparable upregulation of junb
and junbl following methylmercury (junb 7.4-fold and junbl
4.8-fold). These genes are known to play a role in zebrafish
tissue regeneration and especially in regenerating fin and fin
fold (Ishida et al. 2010). This could be an indication of a
compensatory effect to the methylmercury-induced develop-
mental toxicity, which inflicts tissue damage in the fin fold.

Exposure to Aroclor 1254 resulted in changes of
mitochondria-related pathways at multiple functional levels
including mitochondria structure and function, protein folding
and transport, reduced oxygen level, and autophagosomes
among others (Fig. 5). These results are in line with several
other studies showing disruptive effects of PCBs on mito-
chondrial oxidative phosphorylation (Nishihara and Utsumi
1987), decreased respiratory control (Nishihara 1985), elec-
tron transfer (Nishihara et al. 1986), and ROS generation
(Fujita et al. 2006) for rat and marine fish species
(Schlezinger et al. 2006). Aroclor 1254 is known to impair
oxidative phosphorylation, which could explain the strong
effect on mitochondrial and oxygen depletion related path-
ways. Mitochondria have shown to be the earliest and most
important cell targets in Aroclor-mediated toxicity (Aly et al.
2009; Aly and Domènech 2009).

Aroclor 1254 generally is considered as a strong inducer of
cyp1a not only in fish (Shelton et al. 1986; Chaty et al. 2004)
but also in other vertebrates for instance rats or humans
(Silkworth et al. 2005; Borlak and Jenke 2008). In accordance
with these studies, cyp1a showed the highest absolute mean
fold-change of all genes that reacted significantly to Aroclor
1254 in this study (7.9-fold; Table 1). According to
Schlezinger et al. (2006), PCB can cause oxidative stress by
uncoupling the catalytic cycle of cyp1a, thereby enhancing
ROS production. This might be an important mechanism of
Aroclor 1254 toxicity in the fish embryos. Results from Liu
et al. (2014) suggest that oxidative stress represents a major
factor in the induction of various developmental alterations in
early life stages of zebrafish exposed to PCB. Moreover, our
results show that transcripts of genes belonging to pathways
related to cellular oxygen level and response to hypoxia (both
GO) and peroxisome (KEGG) were also enriched following
exposure to Aroclor 1254 further supporting our findings sug-
gesting an oxidative stress response. Additionally, a few stud-
ies suggested that cyp1a and the aryl hydrocarbon receptor
(AhR) pathway are involved in more specific toxicity, in par-
ticular abnormal development of zebrafish, e.g., embryonic
craniofacial and cardiovascular malformations, circulatory
failure, edemas, and hemorrhages (Henry et al. 1997;
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Handley-Goldstone et al. 2005; Carney et al. 2006; Jönsson
et al. 2007). Several knockdown studies have shown crosstalk
between the AhR and other signaling pathways underlining
the importance of cyp1a for specific toxic endpoints. For
example, Jönsson et al. (2012) demonstrated that the effects
of PCB126 on inflation of the swim bladder are depending on
the AhR and that treatment with a morpholino to knock down
AhR rescued the effect of PCB126 on the developing swim
bladder in zebrafish. Another study showed that exposure to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes AhR de-
pendent misregulation of Wnt/β-catenin target genes thereby
altering the differentiation and/or the proliferative status of
liver progenitor cells (Prochazkova et al. 2011). Further stud-
ies are required to underpin this connection.

Alongside the already mentioned alterations of the peroxi-
some pathway, retinol metabolismwas one of the significantly
over-expressed KEGG pathways, indicating an effect of the
AhR pathway on the photoreceptor development. The aryl
hydrocarbon receptor repressor (AHRR) is a transcriptional
repressor of the AhR and is regulated by an AhR-dependent
mechanism. Zebrafish possess two AHRR paralogs: AHRRa
regulates constitutive AHR signaling during development,
whereas AHRRb regulates PAH-induced gene expression.
Aluru et al. (2014) conducted microarray-based whole-ge-
nomemRNA analyses on zebrafish embryos with morpholino
knocked down zfAhRRa or zfAhRRb. Among the downreg-
ulated genes by zfAhRRa knockdown, several were related to
photoreceptor function of the eye (opsins, phosphodiesterases,
phosducin, arrestins, and retinol binding protein), suggesting
that AHRRa affects photoreceptor development, which is in
line with our KEGG pathway analysis results.

Salvi and Toninello (2001) found that Aroclor 1254 can
influence the mitochondrial permeability transition (MPT).
A sudden increase in the permeability of the mitochondrial
inner membrane leads to a colloid osmotic swelling of the
organelle. This process takes place when large amounts of
Ca2+ are accumulated in the matrix space of the mitochondri-
on. In this study, several enriched functional terms following
Aroclor 1254 exposure can be linked to MTP, including mi-
tochondrial membrane organization, mitochondrial transport,
protein import into mitochondrial matrix, and mitochondrial
outer membrane as well as necrosis and apoptosis (Bradham
et al. 1998; Fujita et al. 2006). The induction of apoptosis is an
important process to eliminate tumor cells, and the suggested
MPT-inhibiting effect of Aroclor 1254 might provide a possi-
ble explanation for the carcinogenic effect of PCBs (Salvi and
Toninello 2001). Aly and Domènech (2009) investigated the
effects of Aroclor 1254 on hepatocyte mitochondria of rats
and found that Aroclor 1254 inhibited β-oxidation of fatty
acid and mitochondrial respiratory chain complexes. These
findings were in coherence with our experiments on Aroclor
1254 in which terms were enriched for mitochondrial mem-
brane function and composition (downregulated). The goal of

our analysis was to exclude general effects that are not specific
to a certain treatment. Oxidative stress is considered to be a
more general process. However, Yang et al. (2007) showed
that there is no general, contaminant unspecific response to
oxidative stress in zebrafish. Instead, genes induced by oxida-
tive stress can differ between treatments suggesting
contaminant-specific effects. This is in line with our results
as we detected very specific genes and pathways related to
oxidative stress. Additionally, our analysis included only
genes reacting specific to one of the treatments making it more
likely that the responses are substance class-specific. Genes
related to oxidative stress (e.g., catalase, glutathione peroxi-
dase) also showed a change in expression following exposure
to methylmercury (data not shown), which is considered to be
a major enabler of oxidative stress in zebrafish (Richter et al.
2011; Cambier et al. 2012). These genes were excluded (by
our algorithm) from pathway network analysis because their
reaction was not specific to one of the treatments.

Although the results were overall promising, there were
some limitations of the study, which have to be mentioned.
We used only a single exposure concentration and time for
each treatment. At different stages of the zebrafish develop-
ment or after exposure to various test concentrations, the se-
lected genes might be expressed differently. It is possible that
internal concentrations have not reached a state of equilibrium
at 48 hpf due to different toxicokinetics possibly affecting
gene responses.

Consequently, further studies are required to confirm the
specific transcriptome signatures of methylmercury, chlorpyr-
ifos, and Aroclor 1254. Moreover, real-time polymerase chain
reaction could be used to ensure specificity and robustness of
the results. We selected three chemicals that represent
ecotoxicologically relevant substance classes to find sub-
stance class-specific effects. For methylmercury, we were able
to detect very specific genes and pathways which could be
linked to certain mechanism-specific effects and were in line
with our hypothesis. For Aroclor and chlorpyrifos, however,
fewer genes were found overall and the detected effects were
both specific and general. In order to fully exploit the potential
of our approach, an extension of the analysis using more sub-
stance classes is needed. This would not only reveal specific
genes and pathways for a greater number of contaminant clas-
ses but would also improve the performance and results for
each substance class by ultimately excluding more and more
general genes and pathways.

Conclusions

In the present study, we demonstrated that our approach of
transcriptome analysis can be very successful in defining dis-
criminative genes for different classes of contaminants.
Limiting the further analysis of the data to these discriminative
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genes and finding transcriptome signatures increases the
chance of detecting genes that play important roles in contam-
inant class-specific regulatory pathways (as shown for fin
morphogenesis in response to exposure to methylmercury).
The selected genes and transcriptome signatures can be rele-
vant in the proposed concept of a barcode-like identification
of toxic substances in biological samples (Lettieri 2006; Yang
et al. 2007) or as a part of an adverse outcome pathway (AOP)
if combined with information from different levels of biolog-
ical organization (Van Aggelen et al. 2010; Villeneuve et al.
2014a, b). Thereby, given further studies with other contami-
nant classes and perhaps even mixtures for verification, our
results may be implemented in environmental monitoring or
risk assessment.

In conclusion, contaminant class-specific discriminative
genes and transcriptome signatures could effectively be ex-
tracted from microarray data of zebrafish embryos.
However, further investigations with more substance classes
and the development of robust statistical approaches are re-
quired to verify and enhance our findings.
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