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Abstract. 1. As mature tropical forests disappear, secondary forests with their
potential to conserve mature tropical forest species are increasingly of interest in a
conservation context.
2. We investigated the recovery of litter inhabiting beetle diversity and composi-

tion during natural forest regeneration in the coastal submontane forest of Southern
Brazil, using chronosequences on two different soil types: cambisol and gleysol. Sec-
ondary forests, ranging in ages from 5 to 50 years, as well as old-growth forests were
studied. Beetles were sifted from leaf litter and extracted using the Winkler tech-
nique.
3. Young secondary forests had a very low species density and a significantly dif-

ferent and heterogeneous species composition compared to old-growth forests. Dur-
ing forest regeneration, species density greatly increased and the species composition
of older secondary forests was similar to that of old-growth forests. The recovery
pattern of species density and composition differed between soil types; nonetheless,
they showed the same tendencies generally. Thus, mature secondary forests of about
35–50 years can be assumed to contribute substantially to the maintenance of forest
beetle species.
4. Litter quantity was not only significantly correlated with species density; but,

even reflected the density pattern of both soil types. Thus, litter quantity is an impor-
tant factor for maintaining or recovering high beetle densities. The composition of
beetle assemblages was strongly affected by soil type. Thus, soil type should be con-
sidered in regional biodiversity monitoring and conservation actions.
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Introduction

Amajor threat to global biodiversity is the ongoing destruction

of mature tropical forests (Dirzo & Raven, 2003). Although

future deforestation rates and their consequence for species
extinction is scientifically debated (Brook et al., 2006; Wright &
Muller-Landau, 2006a,b; Gardner et al., 2007b; Laurance,

2007), it is widely agreed that the proportion of secondary forests
to total forest areawill further increase (Perz&Skole, 2003;Aide
& Grau, 2004; FAO 2009). This trend makes it important to
evaluate the potential of secondary forests to act as refuges for

forest species (Lawton et al., 1998; Wright, 2005). However,
data on the recovery of faunal assemblages during forest
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regrowth are still sparse and mostly confined to a few popular
groups, such as birds and ants (e.g. Dunn, 2004; Sodhi et al.,

2005; Silva et al., 2007; Bihn et al., 2008; but, see Basset et al.,
2008). Prediction of changes in species richness, among faunal
groups using indicator taxa, often fails (Prendergast, 1997; Law-

ton et al., 1998;Wolters et al., 2006; Barlow et al., 2007a; Basset
et al., 2008); therefore, it is crucial to increase the database of
faunal inventories and their response patterns (Schulze et al.,

2004). This is especially true for tropical insect communities of
highly specific microhabitats, such as leaf litter (Lewinsohn
et al., 2005).

Beetles affect many important ecosystem processes in forests
including litter decomposition, nutrient flow and food web regu-
lation. Theymodulate their environment at different trophic lev-
els being predators as well as decomposers. In tropical forests,

beetles are particularly species rich and abundant (Hammond,
1990; Nadkarni & Longino, 1990; Didham et al., 1998; Stork &
Grimbacher, 2006) and reflect the richness of insect communities

(Moeed & Meads, 1985). However, litter inhabiting beetles of
tropical forests have rarely been studied owing to their diminu-
tive size and poor taxonomical description.Most available stud-

ies that examined the effect of habitat loss and modification on
ground related beetles in neotropical regions, were conducted in
the Amazonian rainforest and focused on dung beetles (Klein,
1989; Andresen, 2003; Spector & Ayzama, 2003; Feer & Hin-

grat, 2005; Gardner et al., 2008; but, see Didham et al., 1998;
Uehara-Prado et al., 2009).
Forest succession is accompanied with an increase in litter

fall (Ewel, 1976) and tree diversity (Liebsch et al., 2008),
which accelerates the amount and complexity of leaf litter
(Burghouts et al., 1992). An increase in quantity (Jonsson &

Jonsell, 1999; Barberena-Arias & Aide, 2003) and complexity
(Tews et al., 2004; Lassau et al., 2005) of inhabited substrate
often positively affects beetle diversity and composition. It is

frequently traced back to increased resource availability
(Gotelli & Colwell, 2001) and an extensive number of habit-
able niches (Klopfer & MacArthur, 1960). Furthermore,
macro-fauna in or on soils is dependent upon microclimatic

conditions (Martius et al., 2004). In particular, soil moisture
has a strong effect on species diversity and composition
(Lassau et al., 2005).

We investigated the recovery pattern of litter inhabiting bee-
tles during natural forest regeneration, in soils differing mark-
edly in moisture content in theMata Atlântica (Atlantic Forest)

of Brazil. To the best of our knowledge no comparable study,
examining the effect of forest succession and soil type on litter
beetles, has been conducted in the Brazilian Atlantic Forest, one
of the most threatened tropical forest biomes in the world.

Migration, industrialisation and urban expansion have resulted
in only 11–16% of the original forest area remaining in small
fragments of mostly secondary forests (Ribeiro et al., 2009).

Nevertheless, the Atlantic Forest biome still exhibits an enor-
mous biodiversity, and its conservation is of extreme importance
(Laurance, 2009). We addressed and tested the following

hypotheses related to the response of litter inhabiting beetles to
forest regeneration: (i) species density increases and species com-
position changes with forest age. (ii) Litter volume influences sig-

nificantly species density and composition. (iii) Different soil

types have different species composition and affect species den-
sity.

Methods

Study area and sites

The study was conducted in the coastal mountain range in
Paraná, Southern Brazil, within the municipality of Antonina.
The regional climate is classified according to Köppen as Cfa
(humid subtropical, Peel et al., 2007), with an annual rainfall of

2000–3000 mm, a wet season from September to April and a
dry season from May to August. The average annual tempera-
ture is 20� C. The study sites were located in the Cachoeira Nat-

ure Reserve, owned by the Brazilian NGO Society for Wildlife
Research and Environmental Education (SPVS) (Fig. 1). The
reserve is located in the submontane forest zone (0–600 m above

sea level). The natural vegetation is classified as humid submon-
tane forest (IBGE 1992). Forest disturbances were caused
mainly by buffalo grazing, cash crop plantations and selective

logging. This has led to amosaic landscape ofmature and differ-
ent-aged secondary forests embedded in a matrix of small settle-
ments, farms and pastures.
We used a chronosequence approach to investigate the recov-

ery of litter inhabiting beetles during forest regeneration.A chro-
nosequence comprises three stages of secondary forest: Stage 1
(very young:�5 years after abandonment), Stage 2 (young: 12–

15 years), Stage 3 (old: 35–50 years) and Stage 4 as a reference
(old-growth forests: at least 100 years without anthropogenic
impact). To investigate the influence of soil type on recovery pat-

terns, chronosequences were studied on two contrasting soil
types: cambisol and gleysol. Gleysols, unlike cambisols, are
influenced by groundwater and have a seasonally high water

level. Because the flat plains of the reserve were intensively
anthropogenically used, old-growth forests are not found on the
gleysol; therefore, they could not be included in the study design.
Three replicate sites per forest stage ⁄ soil type combination were

established and scattered throughout the reserve. The age after
abandonment was estimated from information provided by
long-time residents and from satellite photos taken in 1952, 1980

and 2002. Sites were located using local vegetation and soil data
provided by the SPVS.

Sampling methods and beetle identification

Beetles were collected from June to July 2003 from 20 1-m2

leaf litter samples taken at each site using a 1-m2 frame. Samples
were taken every 5 m along two parallel 50 m transects installed
at least 50 m from the forest edge to minimise edge effects. The

leaf litter was sieved through a 10-mm mesh. Beetles were
extracted from the samples using theWinkler method (Besuchet
et al., 1987); Winkler bags were suspended for 3 days, which

was suitable for a comparative survey of litter inhabiting beetles
(Krell et al., 2005). Leaf litter volume was measured by filling
the coarse leaf litter in a graduated bucket, slightly compressing

the foliage using a standard weight and then measuring the
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depth of the litter. Beetles were identified to the family level using
the keys fromLawrence et al. (1999). Nine beetle families [Cara-
bidae, Curculionidae (with the exception of Scolytinae), Staphy-

linidae, Leiodidae, Endomychidae, Hydrophilidae, Cerylonidae,
Eucinetidae, and Tenebrionidae] were further sorted into mor-
phospecies (Oliver &Beattie, 1996; Barrat et al., 2003) or species

when possible. We refer to morphospecies as species. We chose
these beetle families because: (i) they were sampled in high num-
bers. (ii) They are typical inhabitants of leaf litter. (iii) Taxono-

mists were able to study our material. We also differentiated
between predators (Staphylinidae, Carabidae) and decomposers
(Curculionidae, remaining five families). As we lacked data on

the feeding behaviour of focal species, we determined trophic
groups using data listed inLawrence et al. (1999) and in the liter-
ature cited in Hanagarth and Brändle (2001). Accordingly, the

decomposer group includes fungivorous, phytophagous, and
saprophagous species. Voucher specimens were deposited in the
Department of Zoology,University of Curitiba (UFPR).

Fig. 1. Map of the study region, indicat-

ing the location of the study sites in the

Rio do Cachoeira Reserve. Numbers indi-

cate successional stages 1–4 (white circles:

sites on cambisol, black circles: sites on

gleysol).
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Data analyses

Species data for all 20 sub-samples per site were pooled
because individual catches were too small for reliable analyses.
We compared species density rather than species richness

between forest stages. This was due to the low species counts
at several sites, which we considered a meaningful part of the
response pattern. We standardised the observed species

numbers by estimating total species numbers using an abun-
dance-based non-parametric estimator (Jack 1) (EstimateS 8.0,
Colwell, 2006). Patterns in species density were analysed con-

jointly for all beetle families and separately for Staphylinidae,
Carabidae, Curculionidae and the remaining families using
one-way analysis of variance (one-way ANOVA) and Fisher’s
LSD post hoc tests (SPSS 17.0.2, Chicago, IL, USA). Pearson

correlations between species density of Staphylinidae, Carabi-
dae, and Curculionidae were conducted to test for possible
indicator groups reflecting overall species density. We exam-

ined the effect of litter volume, successional stage and soil type
on species density with two-way ANOVA (SPSS 17.0.2). The
effect of litter volume on species density was examined in anal-

yses with and without litter volume as covariate. Additionally,
we compared species richness between old-growth forest and
old secondary forest using sample based rarefaction curves
(EstimateS 8.0). We calculated relative evenness of abundance

and counted the number of species unique to each forest
stage ⁄ soil type combination. Unique species are defined here
as those species represented by at least two specimens in a suc-

cessional stage ⁄ soil type combination and no specimens in
other combinations. We tested for differences in species com-
position among forest stages on both soil types using the mul-

tiresponse permutation procedure (MRPP) and visualised
pattern of similarity in beetle assemblage composition with

non-metric multidimensional scaling (NMDS) ordination. This
was based on square root transformed data and the Bray-Cur-

tis distance measure (PCOrd version 4.01, McCune & Mef-
ford, 1999). We used a permutational multivariate analysis of
variance (PERMANCOVA, Anderson, 2005) to examine the

effect of successional stage (Stages 1–3), soil type and litter vol-
ume as covariate on an assemblage composition with 999 per-
mutations of residuals in the full model, using square root

transformed data and Bray-Curtis distances.

Results

Beetle fauna

A total of 3683 beetles, representing 35 families (Appendix 1),
were collected from 420 m2 leaf litter. Dominant beetle families
were staphylinids (52.5%), curculionids (13%), scydmaenids

(9%) and carabids (9%) together representing 83.5% of total
counts. Fifteen families were represented only as singletons or
doubletons; 2181 specimens of nine beetle families were deter-

mined to 256 species. The most species rich families were sta-
phylinids (159 species), curculionids (39), and carabids (23).
Fifty-seven per cent of all species were recorded as singletons or
doubletons. Species accumulation curves did not reach an

asymptote. The estimate of total species number (34–77%) indi-
cated amoderate level of completeness (Table 1).

Species density and richness

Species density increased with forest age (cambisol:
P = 0.001; gleysol: P = 0.01; n = 3; Fig. 2a). On cambisol,

Table 1. Diversity and abundance of leaf litter beetles along successional stages in the Atlantic Forest of Southern Brazil.

Parameter

Soil type and successional stage*

Cambisol Gleysol

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3

Number of families� 9.0 � 2.6 9.7 � 1.2 14.3 � 4.2 15.3 � 2.1 8.0 � 2 9.3 � 0.6 9.0 � 1.0

Abundance (families)� 60.3 � 25.5 106.0 � 64.1 348.0 � 238.5 390.3 � 107.9 33.7 � 8.1 172.3 � 37.1 131.3 � 77.2

Observed number of

species�
16.7 � 3.2 20.3 � 3.5 57.0 � 16.6 62.0 � 9.2 8.3 � 0.6 33.3 � 5.9 29.7 � 11.8

Abundance (species)� 38.7 � 22.4 38.7 � 16.5 237.0 � 182.3 236.7 � 101.2 12.3 � 4.0 93.3 � 26.6 70.3 � 48.8

Estimated number of

species�
25.8 � 3.0 34.6 � 4.5 85.5 � 20.2 89.5 � 9.4 14.0 � 2.2 50.4 � 12.7 47.4 � 18.5

Unique species 3 2 6 13 1 8 0

Completeness (%)§ 34 ⁄ 52 ⁄ 57 47 ⁄ 62 ⁄ 61 56 ⁄ 64 ⁄ 56 66 ⁄ 75 ⁄ 77 72 ⁄ 65 ⁄ 67 57 ⁄ 68 ⁄ 75 63 ⁄ 63 ⁄ 61
Evenness (J’) 0.86 � 0.13 0.92 � 0.05 0.86 � 0.04 0.87 � 0.04 0.96 � 0.03 0.88 � 0.02 0.92 � 0.06

*Numbers represent different-aged forest stages comprising secondary forests of �5 years (stage 1), 12–15 years (stage 2), 35–50 years

(stage 3), and old-growth forest (stage 4).

�Means of three replicate sites (n = 3). Sub-samples of each site were pooled. Number of species observed on 20 1-m2 plots of forest

floor.

�Estimated total number of species (on 20 1-m2 plots of forest floor) using the Jack 1 richness estimator with 100 randomisations without

replacement.

§Percentage of Jack 1 estimate compared to observed number of species. Completeness is stated for every replicate site.
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Stage 1 (very young) and Stage 2 (young secondary forest) did
not differ significantly from each other (Fig. 2a). However, the

total species density was convincingly lower than that of older
forest stages (Fig. 2a). The species density of old secondary for-
est did not differ significantly from that of old-growth forest

(Fig. 2a). The species density of Stage 1 was notably lower than
that of Stages 2 and 3 on gleysol; on the other hand, the species
density did not increase between Stage 2 and Stage 3 (Fig. 2).
Predators (Fig. 2b, c) and decomposers (Fig. 2d, e) showed a

similar pattern. We found meaningful effects of successional

stage and soil type on total species density (Table 2a). When lit-
ter volume was added as covariate to the model, soil type no

longer significantly affected total species density (Table 2b).
Sample based rarefaction curves of species richness showed no
notable difference between old-growth forest and Stage 3 (old

secondary forest, Fig. 2f). Evennesses between successional
stages were similar and ranged from 0.86 to 0.96 (ANOVA,
P = 0.76, n = 3; Table 1). The staphylinid density pattern
showed the best correlation to overall species density (r = 0.93,

P < 0.001).

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Patterns of species density (a–e) and species richness (f) of secondary and old-growth forests. The mean estimated species density

of different-aged secondary forests (stages 1–3) and old-growth forest (stage 4) were compared for all species combined (a) and for only

staphylinids (b), carabids (c), curculionids (d), and for less-abundant beetle families belonging to the decomposer group (hydrophilids, ten-

ebrionids, eucinetids, endomychids, leiodids, cerylonids) in a joint plot (e). Stages on cambisol (d) and gleysol (D) were analysed sepa-

rately. Stages (n = 3) were tested among each other for statistical significance (LSD tests, P £ 0.05). In a–e, different letters indicate

different means. (f) Sample based rarefaction curves of mature secondary forest (stage 3) and old-growth forest on cambisol, calculated

for all three sites combined.
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Litter volume

The mean leaf litter volume per site between samples and
within replicates was highly variable. Litter volume changed sig-
nificantly during forest regeneration (P = 0.04, n = 3; Fig. 3).

The mean leaf litter volume of young secondary forests was
lower than that of old secondary forests and old-growth forest.

Litter volume was lower at gleysol sites than at cambisol sites,
except for Stage 2. The increasing litter volume and increasing

species density patterns were highly consistent with regard to
successional stage and soil type.

Beetle assemblage composition

The species composition of litter inhabiting beetle assem-
blages differed among successional stages (MRPP, cambisol:
P = 0.015; gleysol: P = 0.01; Fig. 3). Multidimensional scal-
ing ordination grouped sites on gleysol separately from sites on

cambisol (Fig. 4). Young forests (Stages 1 and 2) showed high
heterogeneity. On cambisol, the assemblage composition of
Stages 1 and 2 differed significantly from that of Stage 3 and

old-growth forest (Stage 4; MRPP, P = 0.03). The assemblage
composition of Stages 3 and 4 was less variable among sites and
did not differ from each other (MRPP, P = 0.89). On gleysol,

the assemblage composition of Stage 1 differed from that of
Stages 2 and 3 (MRPP, P = 0.02). The assemblage composi-
tion was significantly affected by soil type (P = 0.004), succes-

sional stage (P = 0.035), as well as litter volume (P = 0.001).

Discussion

Patterns of species density and richness

The species density of leaf litter beetles in old-growth forests
wasmuch higher than that of secondary forests, 5–15 years after

Table 2. Results of two-way anova on the effect of soil type and

successional stage on species density. The effect of litter quantity

was evaluated by calculating the effects of soil type and

successional stage without considering litter quantity in the model

(b) and by adding litter volume as covariate (a).

Source of

variation

SS

(type I) d.f. MS F P

(a)

Soil type 4168.0 1 4168.0 18.8 0.001

Successional stage 8843.5 3 2947.8 13.3 <0.001

Soil type ·
successional

stage

2165.3 2 1082.6 4.9 0.026

Error 2883.4 13 221.8

(b)

Litter volume 14702.7 1 14202.7 115.1 <0.001

Soil type 9.3 1 9.3 0.1 0.970

Successional stage 1343.4 3 447.7 3.5 0.010

Soil type ·
successional

stage

471.3 2 235.6 1.8 0.020

Error 1533.6 12 127.8

Fig. 3. Box plots of leaf litter volume per m2 in different succes-

sional stage ⁄ soil type combinations in the Atlantic Forest of Bra-

zil. The central horizontal line in the box marks the median of

the values; the box edges the first and third quartile. The inter-

quartile range within the box includes the central 50% of the val-

ues. The whiskers show the range of observed values that are not

within the first and third quartile but not further away than 1.5

times the inter-quartile range from the hinges. Crosses are the

arithmetic mean. Each box contains 20 values of three replicate

sites, making a total of 60 values.

Fig. 4. Non-metric multidimensional scaling (NMDS) ordination

of the leaf litter beetle assemblages, according to successional

stage and soil type. Species are indicated with crosses. Succes-

sional stage ⁄ soil type combinations grouped closer together are

more similar in species composition.
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abandonment. This reveals a clear negative effect of deforesta-
tion on the diversity of the selected beetle families, as reported

for many other taxa (e.g. Lawton et al., 1998; Nichols et al.
2007; Bihn et al., 2008). Moreover, the very low number of spe-
cies in young forests, mostly found as singletons, demonstrates

the unsuitability of these habitats for beetles inhabiting this niche
inmature forests as well as for species well adapted to open habi-
tats. Larger open habitats are not a natural component of the

landscape; therefore, the invasion of open habitat species in
deforested sites probably influences the recolonisation of leaf lit-
ter beetles very little in the area studied.

Old secondary forests of about 35–50 years already had spe-
cies densities and richness similar to that of old-growth forest,
indicating a rapid recovery during further forest regeneration.
This result supports the conclusion of Dunn (2004) and Grimb-

acher et al. (2007) that species richness is the component of
diversity with the highest recovery ability.
The recovery patterns of predators and decomposers did not

differ significantly (Fig. 2b–e) with an almost linear relationship
between their densities (see Gaston et al., 1992). A direct preda-
tor ⁄prey interaction seems insufficient to explain this pattern, as

the abundance of predators clearly exceeds that of decomposers.
The pattern can best be explained by a general cascading effect
of lower trophic levels on the diversity of higher trophic levels
driven by litter quantity (Barberena-Arias &Aide, 2003).

We found Staphylinidae to be the most abundant and species
rich beetle family by far in our study sites, which is also found in
nearby temperate forests (Marinoni & Ganho, 2003) and the

Amazonian region (Didham et al., 1998; Hanagarth & Brändle,
2001). The pattern of staphylinid density observed was strongly
correlated with the pattern of overall beetle density. Thus,

although their taxonomy is notoriously difficult, staphylinids
may be a good biodiversity indicator of beetle assemblages in
tropical forests.

Recovery of assemblage composition

Patterns of significant changes in species composition during
forest regeneration were comparable to those of species density
(Figs 2 and 3). Compared to the assemblages of mature for-

ests, the assemblages of young forests were more similar to
each other; however, the initial post-disturbance assemblages
of the young forests still varied greatly. We suggest that this

heterogeneity is caused by variable recolonisation scenarios,
which are affected by differing vegetation structures. These in
turn influence microclimatic conditions and litter quantity
(Liebsch et al., 2007), by proximity of native habitats (Pawson

et al., 2008) and by disturbance history (Saint-Germain et al.,
2005). Old secondary forests varied less in composition and
were not distinguishable from old-growth forests. Grimbacher

et al. (2007) found similar results; possible reasons for these
observations were given as a longer time for beetle accumula-
tion, a greater structural habitat complexity (Lassau et al.,

2005) and larger plant species richness (Haddad et al., 2001).
However, comparable studies still found large differences
between old secondary forests and old-growth forests, emphas-

ising a much longer time span for the recovery of ant (Dunn,

2004; Bihn et al., 2008), amphibian ⁄ lizard (Gardner et al.,
2007a) and bird assemblages (Dunn, 2004; Barlow et al.,

2007b). We suggest four explanations for the fast recovery of
leaf litter beetle assemblages, observed in our study. First,
many litter inhabiting beetles are volant or have a high surface

mobility, allowing them to disperse well. Second, the short
generation time of beetles promotes rapid recolonisation of
suitable habitats. Third, a quantity of leaf litter comparable to

that of old-growth forest offers adequate microhabitats for
most forest species. Fourth, large old-growth forest patches,
which still exist in our study area, could serve as species

sources for secondary forests, which feature conditions already
suitable for forest species.

Sample adequacy and rare species

Rare species are an integral part of tropical insect assemblages

(Novotny & Basset, 2000) as shown in many beetle studies in
tropical forests (e.g. see Didham et al., 1998; Grimbacher et al.,
2007). We only reached a moderate degree of sample complete-

ness with many singletons, making it difficult to distinguish
between random catches and distribution patterns of rare spe-
cies. However, the reliability of our findings is supported by an
almost identical pattern of additional chronosequences in a

nearby reserve (only on cambisol), despite seasonal and spatial
differences in sampling. Nevertheless, we found at least 13
‘unique’ species in old-growth forests that could not be statisti-

cally confirmed as indicators of old-growth forests. We suggest
that probablymore rare beetle species will be lost through defor-
estation than short-term studies are able to detect. Therefore, we

stress the importance of maintaining old-growth forests to pro-
tect forest biodiversity.

Effect of soil type on the recovery pattern

The soil type strongly influenced the recovery pattern of spe-

cies density and composition. Lower species densities in old sec-
ondary forests on gleysol compared to cambisol indicate that
the harsh conditions on gleysol may restrict species establish-

ment. Other studies have shown that high soil moisture nega-
tively affects beetle diversity by influencing adult habitat
selection and reproduction (Doube, 1983; Vessby & Wiktelius,

2003). However, the surprisingly similar pattern of species den-
sity and litter volume indicates that the amount of litter may be
far more important for explaining the species density pattern
than soil moisture. This assumption is supported by the observa-

tion that little additional variance is explained when leaf litter is
added to themodel (Table 2). Thus, soil type seems to affect spe-
cies density indirectly by affecting litter quantity. Seasonal flood-

ing that occurs on the gleysol sites may restrict the development
of deep and complex litter layers; thereby, reducing the number
of species, as reported for spiders (Uetz, 1976). However, soil

type significantly affected assemblage composition even when
litter volume was added to the model (Fig. 3). This indicated
that the composition of assemblages contains information not

reflected in species diversity metrics. A convergence towards
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more similar assemblages in older stages suggests that the major
difference in assemblage composition could be confined to the

recolonisation process. This signifies that pioneers on gleysol
and cambisol differ and fewer mature forest species occur on
gleysol than on cambisol.

Conclusions

The study established that beetle species density increases
and assemblage composition changes during forest regenera-
tion. However, only mature secondary forests of 35–50 years

seem to be suitable habitats for most litter inhabiting beetle
species. These mature secondary forests can be considered to
contribute substantially to the maintenance of forest species,

at least when old-growth forests remain nearby. Younger
forests, up to 15 years after abandonment, showed low spe-
cies densities even though they are situated in the immediate

vicinity of an old-growth forest and feature an almost forest
like structure.
Litter quantity was strongly correlated with species density

and seems to reflect species density on both gleysol and cambisol
soils. Thus, litter volume may be an important aspect of priority
sites for conservation if the goal is to maintain a high density of
beetle species. It is likely that insects will rarely be the primary

target of future regional conservation strategies; thereby, causing
litter quantity to be a valuable interface between the preservation
of biotopes and the conservation of insects. However, it is debat-

able whether or not the addition of leaf litter, in initial regenera-
tion stages, is an efficient tool for accelerating the recovery of
leaf litter beetles. Nakamura et al. (2009) mentioned positive

effects of mulching for the recolonisation of ants and points out
the necessity of a fully closed canopy to suppress the invasion by
pastoral species. In our study region a competition with pastoral

species does not seem to limit the recolonisation of forest species;
therefore, addition of leaf litter could be efficient even in the ini-
tial stages, when the canopy is not yet closed. However, the
quantity of habitable substrate was not in itself sufficient to pre-

dict the structure of litter inhabiting beetle assemblages. Condi-
tions related to soil type, especially if the soils differ
dramatically, must be considered if highly diverse soil-related

insect communities, such as beetles, are to be integrated into con-
servation strategies.
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ica Brasilica, 21, 983–992.

Liebsch, D., Marques, M.C.M. & Goldenberg, R. (2008) How

long does the Atlantic rain forest take to recover after a distur-

bance? Changes in species composition and ecological features

during secondary succession Biological Conservation, 141,

1717–1725.

Marinoni, R.C. & Ganho, N.G. (2003) Fauna de coleopterano

Parque estadual de Vila Velha, Ponta Grossa, Paraná, Brasil
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Appendix 1

Beetle families and their abundances found in different successional stages (stage 1: �5 years; stage 2: 12–15 years; stage 3: 35–50 years

after abandonment and stage 4: old-growth forest) in the Rio do Cachoeira Reserve, Paraná, Brazil.

Beetle family

Soil type and successional stage

Cambisol Gleysol

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3

Staphylinidae 69 196 552 562 67 287 220

Curculionidae 39 18 132 145 6 73 67

Scydmaenidae 13 10 99 148 7 26 40

Carabidae 15 9 136 124 1 30 23

Ptiliidae 12 45 17 54 3 52 6

Hydrophilidae 3 1 33 28 4 31 17

Eucinetidae – 16 19 18 – 1 3

Chrysomelidae 13 13 7 1 2 5 2

Tenebrionidae 6 2 9 15 1 6 2

Cerylonidae 2 – 15 12 – – 7

Leiodidae 1 – 13 14 1 1 1

Nitidulidae 2 2 2 13 – 2 1

Endomychidae – – 1 18 – – –

Coccinellidae 1 – 2 6 – – 1

Hydraenidae – – – – 3 1 4

Scarabaeidae – – 2 2 – – –

Corylophidae 1 – 2 – – – –

Zopheridae – 2 – – – 1 –

Elateridae – – 1 1 1 – –

Melandryidae – – 1 2 – – –

Anthicidae 1 – – 1 – – –

Scirtidae – 1 – – 1 – –

Cerambycidae – 1 – 1 – – –

Ptilodactylidae – 1 – 1 – – –

Lagriidae – – – – 2 – –

Languridae 1 – – – – – –

Limnichidae – 1 – – – – –

Laemophloidae – – 1 – – – –

Erotylidae – – 1 – – – –

Trogossitidae – – – 1 – – –

Cneoglossidae – – – 1 – – –

Clambidae – – – 1 – – –

Dytiscidae – – – – 1 – –

Lycidae – – – – – 1 –

Lampyridae – – – – 1 – –

Families 15 15 20 23 15 14 14

Abundance 179 308 1045 1169 101 487 394
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