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A B S T R A C T

The aim of this study was to quantify uncertainty when assigning field investigation sites according to their
species community composition to either undisturbed or disturbed reference sites by use of ecological indicators.
In ecological risk assessment this problem arises when selecting control investigation sites or defining reference
species communities. Uncertainty is quantified using a Type II error or misclassification rate. A probabilistic
Bayesian model is used to integrate a priori domain knowledge, assess the error rate and come to re-
commendations about an adequate sample size. Application is demonstrated using data from a case study in-
vestigating off-crop arthropod communities in German grassy field margins and consequences for impact as-
sessment of pesticides on terrestrial ecosystems. The model allows calculating statistical power when using such
a classification system. By means of stochastic simulations, recommendations about experimental design and
indicator size are derived. The study shows that to develop a classification system to typify newly observed sites
a well-balanced ratio of undisturbed and disturbed sites as well as a high relevance of reference sites are needed.
For the given data set, a much larger number of reference sites as well as increased relevance of selected re-
ference sites would be needed to achieve a good classification result. An optimal number of indicators is cal-
culated allowing for a compromise between sampling error and indicator quality. Uncertainty for correct as-
signment of an investigation site is compared using indicators for disturbance and reference conditions. Finally,
misclassification rate is proposed as a new measure for indicator quality.

1. Introduction

The European Union requires that an ecological risk assessment
(ERA) be performed for the authorisation process of plant protection
products (PPP) (EC 1107/2009). The aim of ERA is to decide whether
there may be a risk of unacceptable adverse effects on the environment,
e.g. caused by the chemical substances used in pesticides (www.efsa.
europa.eu). Negative effects of pesticides on biodiversity are still a
problem in European agricultural landscapes (Geiger et al., 2010).
However, to provide important ecosystem functions and services (e.g.
pollination, food web support, pest control) it is important that the
biodiversity of non-target organisms, like plants and soil arthropods be
supported (EFSA PPR Panel, 2014, 2015). This holds for in-field sites, as
well as those areas surrounding a field (off-field sites). The latter in-
clude field margins and buffer strips that may serve as sources of non-

target species, facilitating recovery from impacts in the cropped area
(Holland and Luff, 2000). Landscape structures are known to determine
properties that to a large extent affect the external recovery of popu-
lations (EFSA SC, 2016a,b). The spatial distribution of exposed and non-
exposed refuge areas is a particularly important driver for the under-
lying sink-source dynamics. Thus, to make general protection goals
operational, effects of plant protection products on the occupancy of
non-target organisms must be quantified at the landscape level.

Potential stressors, such as pesticide exposure, can alter the accep-
table range of environmental conditions for populations, communities
or ecosystems as normally observed in a reference ecosystem (Normal
Operating Range, NOR) (Kersting, 1984; Ravera, 1989). In order to
uncover such unacceptable effects of plant protection products, the
normal operation range has to be defined using suitable local reference
sites (Hughes, 1995; Kilgour et al., 1998; Ottermanns et al., 2010). In
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ecological risk assessment these reference sites have to be found in off-
field areas, where the presence of potential stressors can more or less be
excluded.

To define reference sites in an ecological risk assessment, the sites
have to be assigned to a class of undisturbed or opposed to a class of
disturbed sites (statistically referred to as a discriminant analysis).
Bioindicators from the observed species compositions can be used to
achieve this (Golden and Rattner, 2003). One advantage of using
bioindicators is that they tend to integrate effects over time. Indicators
can be calculated from species compositions under undisturbed and
disturbed conditions using indicator analysis (De Cáceres et al., 2012;
Dufrêne and Legendre, 1997). Such an assessment is often focused on
detecting a disturbance within the site under investigation. A species
that is positively associated with disturbance is called a ‘negative in-
dicator’ (Carignan and Villard, 2002), and finding such a species can
lead to the conclusion that the investigated site is disturbed, and the
presence of a potential stressor can be assumed. Not finding the in-
dicator can result in discounting any disturbance or the presence of a
potential stressor (statistically referred to as a two-class prediction
problem). A species that is positively associated with undisturbed
conditions is called a ‘positive indicator’. Finding such a species can
lead to the conclusion that the investigated site is undisturbed and thus
the absence of a potential stressor can be assumed.

When detecting disturbances in such a way, one can make two types
of error (Table 1) corresponding to a set of hypotheses. The first hy-
pothesis states that there is no disturbance at the site under investiga-
tion. The second hypothesis states that there is a disturbance at the site
under investigation. In Type I errors, a disturbance at the site is stated
due to finding the indicator for disturbance, despite the absence of a
disturbance (α-error, false positive assignment). In Type II errors, a
disturbance is neglected due to not finding the indicator for dis-
turbance, despite there being a disturbance (β-error, false negative as-
signment). A Type II error can be interpreted in different but consistent
ways. First, it means that a site is assigned to the undisturbed class
although it belongs to the disturbed class. In this case β can be called a
misclassification rate. Second, it is the probability of a site belonging to
the disturbed class although the indicator for disturbance has not been
observed. The same applies to the detections of undisturbed conditions.

It has been pointed out that, in accordance with precautionary
principles, β should be minimized in environmental risk assessment and
decision-making based on negative indicators. This results in more
powerful statistical testing (Power= 1− β) (Buhl-Mortensen, 1996;
Peterman and M'Gonigle, 1992; Sanderson and Petersen, 2002; Santillo
et al., 1998; Underwood and Chapman, 2003). In terms of risk pro-
tection, for consumers as well as parts of the ecosystem false negative
assignments are much more severe and relevant than false positives.
The demand for protectiveness is especially important when looking at
non-target organisms (Atlas et al., 1978; Montesinos, 2003; Pereira
et al., 2009). Due to their important role in ecosystem functioning and
services, as well as their sensitivity, arthropods are suitable bioindica-
tors to detect adverse effects. One example is studying the effects of
pesticides in impacted German agricultural landscapes (Frampton,
1997; Holland and Luff, 2000; Huusela-Veistola, 1996; Kremen et al.,
1993; Rob-Nickoll et al., 2004; Ottermanns, 2008). Given this context
and the probabilistic interpretation for β from above, the Type II error

can also be referred to as the probability that a pesticide effect exists at
a site, but was overlooked using arthropods as bioindicators.

Uncertainty arises at different stages of the risk assessment due to a
lack of knowledge and to natural variability (EFSA SC, in press, 2016b).
In risk assessment in the field, a crucial source of uncertainty comes
from the selection of potentially unaffected references sites. It is espe-
cially difficult to find suitable reference systems in heavily modified
agricultural landscapes (EFSA SC, 2016b). Nevertheless, to understand
the impact of uncertainty on the final assessment outcome, ecological
risk assessment must (1) clearly identify the sources of uncertainty, (2)
reliably find the range of possible outcomes and (3) exactly quantify the
probability of their occurrence (EFSA SC, in press).

The aim of this study was to quantify uncertainty when assigning
field investigation sites according to their species community compo-
sition by use of ecological indicators to one of two classes, either un-
disturbed or disturbed sites. In ecological risk assessment this problem
arises, for example, when selecting control investigation sites or de-
fining reference species communities. Uncertainty is quantified using
the Type II error or misclassification rate. Both classes are characterized
by specific indicators, consisting of one or more indicator species i.e., a
multiple indicator set. A simple probabilistic Bayesian model was used
to integrate a priori domain knowledge, assess the error rate and come
to recommendations about an adequate sample size when developing
indicators for assessment. Misclassification rate is proposed as a new
measure for indicator quality. This is demonstrated using a data set of
vegetation and arthropods in grassy field margins from three German
macrochores belonging to a class of undisturbed off-field sites not af-
fected by adjacent land use (called references) or a class of off-field sites
potentially affected by adjacent land use (spray-drift, called non-target
sites). Finally the uncertainty in the correct assignment of an in-
vestigation site to the class of undisturbed references was compared
using indicators for disturbance (negative indicators) and indicators for
reference conditions (positive indicators).

2. Material and methods

2.1. Notation

Throughout this study the following notation is used:

G= 1: site belongs to disturbed class= group 1
G=0: site belongs to undisturbed class= group 0
IG1=1: characteristic indicator (set) for disturbed conditions has
been found
IG1=0: characteristic indicator (set) for disturbed conditions has
not been found
IG0=1: characteristic indicator (set) for undisturbed conditions has
been found
IG0=0: characteristic indicator (set) for undisturbed conditions has
not been found
occ(i,G= k): Occurrence of species i over all sites belonging to class
k (k={0,1})
abu(i,G= k): Abundance of species i over all sites belonging to class
k (k={0,1})
P(IG1= 1|G=1): Probability of finding the indicator for disturbed
conditions at a site given the site belongs to the disturbed class (B
(G= 1)) (resp. IG1=0, IG0= 1, IG0= 0 and G=0), B means the
sensitivity from indicator species analysis
P(G=1|IG1=1): Probability of a site belonging to the disturbed
class given the indicator for disturbed conditions has been found
(A(G=1)), A means the positive predictive value from the indicator
species analysis
P(G=1|IG1=0): Probability of a site belonging to the disturbed
class given the indicator for disturbed conditions has not been
found→ false-negative assignment

Table 1
The two types of error that can be made when detecting disturbance or un-
disturbed conditions.

Observation: Disturbance or
undisturbed conditions stated?

yes Type I error
α

✓

no ✓ Type II error
β

no yes
Truth: Disturbance or undisturbed
conditions present?
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2.2. Data set and context

The application of the approach is demonstrated using data from a
case study, investigating off crop arthropod communities in grassy field
margins and the consequences for impact assessment of pesticides on
terrestrial ecosystems. The data set used in this application came from
Rob-Nickoll et al. (2004), a study that investigated the consequences for
impact assessment of pesticides on arthropods of grassy field margins
(off crop) in terrestrial ecosystems. This study analyzed the epigeic
arthropod and vegetation communities in grassy field margins in three
macrochores, which are typical representatives for intensively used
agricultural landscapes in Germany: the Jülicher Börde (J), the north-
eastern edge of the Leipzig lowlands (L), and the Würzburg area in
Franconia (W). In each macrochore 24 sites were sampled. Four of these
sites were a priori classified as unaffected by adjacent land use and
further denoted as undisturbed reference sites (controls, G=0).
Twenty sites were located in the direct neighbourhood of arable areas,
hereafter referred to as disturbed non-target sites (treatments, G=1).
In this case study these a priori assignments were necessary to develop
indicator species, which afterwards could be applied to classify new
sites as either reference or undisturbed.

The analysis included a variety of abiotic parameters, vegetation
composition as well as arthropods from different trophic levels, dif-
ferent mobility and structural niches: beetles, spiders, springtails, hy-
menoptera, hoverflies and lady birds. These species are also relevant in
the context of ecotoxicological test methods and sufficient ecological
background knowledge on the ecology of the species was available.

All sites were a priori classified into one of two system states (states
of G) in each macrochore: undisturbed (reference, control) sites re-
ferred to as JR, LR, WR, and disturbed (non-target, treatment) sites
referred to as J, L, W.

2.3. Indicator analysis and feature selection

Prior to indicator analysis, singletons in abundance were deleted
and suitable species were pre-selected using the following criteria. The
overall abundance of species i in both site classes had to be larger than
zero and the occurrence of species i at both site classes could not be one.

Indicator analysis (feature selection) was performed in different
analyses for all macrochores using function indicators from the
indicspecies package (De Cáceres et al., 2012; Dufrêne and
Legendre, 1997) in the R statistical environment (R Core Team, 2015).
This is an ecologically motivated method to reduce dimensionality to a
smaller number of site specific indicators (single species or multiple
species combinations). As a type of discriminant approach, it is applied
to the two site classes defined a priori and provides indicators for each
of the two site classes (McCune and Mefford, 2011). Indicator analysis
calculates positive predictive values (A), sensitivities (B) and indicator
values (Indval) from the relative abundances, mean abundances and the
relative degree of presence of a species in a group of sites.

A positive predictive value (A) reflects the probability of a site be-
longing to a certain class G from a set of possible classes (for example
{G=0,G=1}) given an indicator for one of those classes has been
found (for example {IG0=1,IG1=1}): P(G= 0|IG0= 1), P
(G=1|IG0=1). Sensitivity (B) means the probability of finding an
indicator for a class at a site (IG1=1) if the site belongs to the given
class (G=1): P(IG1= 1|G=1). Statistical significance was de-
termined by a permutation test. As the number of sites in the two
classes are not equal, group size equalized indicator values were cal-
culated to ensure independence from group size. This approach supplies
those species which can be recognized as statistically significant in-
dicators for the local conditions in reference and non-target sites in
Jülich, Leipzig and Würzburg.

2.4. Selection of indicators for stochastic simulations

Based on the results of the indicator analysis, feasible indicators
were selected for stochastic simulation studies from the list of indicators
for disturbed conditions using the following procedure. First, we
checked sampling efforts using Jacknife estimator from species accu-
mulation curves (Ottermanns, 2008). Sample sizes proved to be ade-
quate as the species numbers in this data set were found to be between
75 and 86% of the Jacknife estimator. Second, all indicators with
A(i,G= 1)= 1 were removed from the list. This condition was imposed
to rule out methodological sampling errors, because A(i,G=1)=1
means that species i was only observed at disturbed sites but not at
undisturbed sites. Third, the indicators were sorted in descending order
according to sqrt(Indval), and the indicator with maximum value was
selected. The indicator was kept for simulation if the indicator value
(Indval) was> 0.7 (sqrt(Indval) > 0.837). This threshold value
proved suitable for the indication of local conditions in past studies
(Ottermanns, 2008). Additionally, significance from non-parametric
bootstrapping had to be<0.05 and B(i,G= 1) had to be>B(i,G=0).
This additional condition was imposed because we required the sensi-
tivity for disturbed sites needed to be larger than the sensitivity for
reference sites. Otherwise the next indicator from the ranked list was
selected.

2.5. Bayesian misclassification rate

Usually, newly observed sites are assigned to the class k for which
they have the largest positive predictive value A(i,k) given an indicator
species i. As these predictive values are always< 1, the assignment of a
site to one of the classes will inevitably lead to a misclassification. A
common frequentistic misclassification rate quantifies the inaccurate
assignment of an investigation site to the undisturbed class (G=0),
although it belongs to the disturbed class (G=1). It can be calculated
from the ratio of the number of false positive assignments and the
number of false positive+ number of true positive assignments. Due to
the ecotoxicological context of this application, such false negative
assignments for G=1 are of special interest.

In contrast to a frequentistic misclassification rate a priori in-
formation (i.e. domain knowledge) was integrated into a Bayesian
misclassification rate in the study. This refers to the fact that un-
disturbed and disturbed sites are not distributed uniformly in the field.
From our experience, a ratio of about 1:5 can be assumed in German
agricultural landscapes (p(G= 0)=1/6; p(G= 1)=5/6).

If a site is disturbed then it belongs to class G= 1. Overlooking
(=not observing) the indicator for disturbed conditions (IG1= 0) re-
sults in assigning this site to the wrong class of undisturbed sites
(G= 0). So, the Type II error is given by P(G=1|IG1=0). Minimizing
Type II errors results in a higher certainty that the indication derived
from the positive predictive value A(i,k) is correct.

2.6. Probabilistic model

Selected indicators were used in a simple probabilistic Bayesian
model to assess the rate of misclassification. The network topology
models the two-class problem in which a binary parent variable (state
G) determines the values of a binary child variable (indicator IG1) (see
Fig. 1). It reflects a case-control study with observed disturbed state
conditions observed (G=1) or not observed disturbed state conditions
not observed (G=0, equals undisturbed conditions observed in this
two class problem, G=1 and G=0 are mutually exclusive and com-
plementary events), disturbance specific indicator set observed
(IG1=1) or disturbance specific indicator set not observed (IG1=0,
be aware that this does not mean that the undisturbed state specific
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indicator set has been observed). G and IG1 are random variables taking
values of {0,1}. The probability of classifying an observation as dis-
turbed due to the observation of the indicator set specific for disturbed
state is called P(G=1|IG1=1), whereas the probability of an ob-
servation belonging to the disturbed state although the indicator set
specific for disturbed state was not observed is denoted as P
(G= 1|IG1=0). The latter is defined as the misclassification rate that
is relevant in environmental monitoring for investigating ecological risk
(Type II error). The definitions of the prior and posterior probabilities
used in this model are given in the Supplementary material.

2.7. Simulation studies to optimize misclassification rate

The probabilistic network was used in different simulation studies
to derive recommendations about how to reduce the misclassification
rate. In scenario 1 the number of reference sites was increased (i.e. an
increase in the prior probability of references sites P(G= 0)). In sce-
nario 2 the probability of finding indicators for undisturbed conditions
given an undisturbed site P(IG1=0|G=0) was increased (i.e. an in-
crease in the indicator value or the quality of the multiple indicator). In
scenario 3 the probability of finding an indicator for undisturbed con-
ditions given a disturbed site P(IG=0|G=1) was reduced (i.e. a re-
duction of false-positive indication of the multiple indicator). All other
variables were kept constant within the simulations. The results were
finally used to come to recommendations about a useful number of
species within the multiple indicator in the attempt to reduce Type II
errors (misclassification rate) under an optimal model complexity.

Fig. 1. Topology of the Bayesian network with discrete state for observation of
the disturbance indicator (IG1={0,1}) and resulting system state (G={0,1}),
including marginal probability table for system state, conditional probability
table for indicator state, and misclassification rate P(G=1|IG1=0).

Table 2
Ten best significant indicators for disturbed conditions (G=1) from the indicator analysis (negative indicators) in all macrochores (J/L/W). A=positive predictive
value, B= sensitivity, sqrt= square root of indicator value Indval. Selected indicators in bold (for abbreviation of species see Table 4).

G=1 G=0

Jülich (J) A B sqrt(Indval) A B sqrt(Indval)

Nebrbrev 0.911 0.80 0.854 0.089 0.50 0.211
Nebrbrev+ Trecquad 0.947 0.70 0.814 0.053 0.25 0.115
Harptard+ Nebrbrev 0.910 0.60 0.739 0.090 0.25 0.150
Trecquad 0.677 0.80 0.736 0.323 0.75 0.493
Harptard+ Nebrbrev+ Trecquad 0.886 0.50 0.666 0.114 0.25 0.169
Sminaure 0.726 0.60 0.660 0.274 0.50 0.370
Harptard 0.591 0.70 0.643 0.409 0.75 0.554
Melamell 0.811 0.45 0.604 0.189 0.25 0.217
Nebrbrev+ Sminaure 0.730 0.45 0.573 0.270 0.5 0.260
Sphapumi 0.538 0.60 0.568 0.462 0.75 0.589

Leipzig (L) A B sqrt(Indval) A B sqrt(Indval)

Amarsimi 0.935 0.90 0.918 0.065 0.25 0.127
Amarcomm 0.876 0.95 0.912 0.124 0.25 0.176
Synuviva 0.897 0.85 0.873 0.103 0.25 0.160
Panabipu 0.951 0.80 0.872 0.049 0.25 0.111
Lepptenu 0.845 0.90 0.872 0.155 0.50 0.279
Melamell+ Amarsimi 0.910 0.80 0.853 0.090 0.25 0.150
Amarcomm+ Erigatra 0.909 0.80 0.853 0.091 0.25 0.151
Amarsimi+ Lepptenu 0.891 0.80 0.844 0.109 0.25 0.165
Amarsimi+ Synuviva 0.888 0.80 0.843 0.112 0.25 0.168
Amarsimi+ Panabipu 0.925 0.70 0.833 0.075 0.25 0.137

Würzburg (W) A B sqrt(Indval) A B sqrt(Indval)

Melamell 0.968 0.95 0.959 0.032 0.25 0.090
Ptermela 0.978 0.90 0.938 0.022 0.25 0.075
Pardpull 0.896 0.95 0.923 0.104 0.75 0.279
Pardoull-Melamell 0.938 0.90 0.919 0.063 0.25 0.125
Pardpull+ Ptermela 0.974 0.85 0.910 0.026 0.25 0.800
Lepttenu 0.836 0.95 0.891 0.164 0.75 0.351
Pardpull+ Lepttenu 0.851 0.90 0.875 0.149 0.50 0.273
Ptermela+ Lepttenu 0.894 0.85 0.872 0.106 0.25 0.163
Pardpull+ Draspusi 0.926 0.80 0.861 0.074 0.25 0.136
Pardpull+ Ptermela+ Lepttenu 0.887 0.80 0.842 0.113 0.25 0.168
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3. Results

3.1. Indicator analysis and feature selection

Indicators are compiled in Tabs. 2 and 3. If an indicator is found in a
newly observed site, this site can be assigned to one of the two classes
with a probability equal to A(i,j,G= k), k= {0,1} (De Cáceres and
Legendre, 2009) (e.g. typifying using a crisp two-class discriminative
function). In Table 2 the ten best significant indicators for disturbed
conditions (G=1) from the indicator analysis are compiled, whereas in
Table 3 the ten best significant indicators for undisturbed conditions
(G=0) can be found.

3.2. Selection of indicators for stochastic simulations and probabilistic
model

The total number of sites per macrochore was 24, the number of
undisturbed sites (G= 0) and disturbed sites (G= 1) per macrochore
were 4 and 20 respectively. From these ratios the a priori probabilities
for the system states of G (priors) are defined as Pk(G= 0)=4/24= 1/
6 and Pk(G=1)= 20/24=5/6, respectively (Bernoulli distributed
with p=1/6, k={J,L,W}).

The resulting a posteriori probabilities for the events IG1= {0,1}
(likelihoods) undisturbed sites (P(IG1=1|G=0) as well as disturbed
sites (P(IG1= 1|G=1)) for the ten best significant indicators are
shown in Table 2. In Jülich Nebria brevicollis, in Leipzig Amara similata
and in Würzburg Melanostoma mellinum were selected as the best in-
dicators given the proposed selection criteria (for species information
see Table 4).

Table 3
Ten best significant indicators for undisturbed conditions (G= 0) from the indicator analysis (positive indicators) in all macrochores (J/L/W). A=positive pre-
dictive value, B= sensitivity, sqrt= square root of indicator value Indval. Selected indicators in bold (for abbreviation of species see Table 4).

G=0 G=1

Jülich (J) A B sqrt(Indval) A B sqrt(Indval)

Harptard+ Lepipara 0.968 0.75 0.852 0.032 0.05 0.040
Harptard+ Trecquad+Lepipara 0.968 0.75 0.852 0.032 0.05 0.040
Panabipu+ Lepipara 0.968 0.75 0.852 0.032 0.05 0.040
Trecquad+ Panabipu+ Lepipara 0.968 0.75 0.852 0.032 0.05 0.040
Trecquad+ Sphapumi+ Panabipu 0.956 0.75 0.847 0.044 0.05 0.047
Trecquad+ Panabipu 0.950 0.75 0.844 0.050 0.05 0.050
Harptard+ Panabipu 0.949 0.75 0.844 0.051 0.10 0.071
Dicynigr 0.948 0.75 0.843 0.052 0.05 0.051
Harptard+ Sphapumi+ Lepipara 0.946 0.75 0.842 0.054 0.05 0.052
Pardnigr 0.946 0.75 0.842 0.054 0.05 0.052

Leipzig (L) A B sqrt(Indval) A B sqrt(Indval)

Lepicyan 0.964 0.75 0.850 0.036 0.05 0.043
Melamell+ Lepicyan 0.959 0.75 0.848 0.041 0.05 0.045
Amarpleb+ Erigatra+ Isotviri 0.946 0.75 0.842 0.054 0.05 0.052
Alopprat+ Coccsept+ Lepicyan 0.938 0.75 0.839 0.063 0.05 0.056
Alopprat+ Isotviri+ Achimill 0.938 0.75 0.839 0.063 0.05 0.056
Alopprat+ Lepicyan 0.938 0.75 0.839 0.063 0.05 0.056
Amarpleb+ Achimill 0.938 0.75 0.839 0.063 0.05 0.056
Amarpleb+ Alopprat+ Achimill 0.938 0.75 0.839 0.063 0.05 0.056
Amarpleb+ Isotviri+ Achimill 0.938 0.75 0.839 0.063 0.05 0.056
Amarpleb+ Melamell+ Achimill 0.938 0.75 0.839 0.063 0.05 0.056

Würzburg (W) A B sqrt(Indval) A B sqrt(Indval)

Pardlugu+ Micapuli 0.952 0.75 0.845 0.048 0.05 0.049
Pardpull+ Pardlugu+ Micapuli 0.952 0.75 0.845 0.048 0.05 0.049
Dysderyt 0.915 0.75 0.829 0.085 0.01 0.092
Draslute+ Micapuli 0.909 0.75 0.826 0.091 0.05 0.067
Haplumbr+ Draslute+ Micapuli 0.909 0.75 0.826 0.091 0.05 0.067
Pardpull+ Draslute+ Micapuli 0.909 0.75 0.826 0.091 0.05 0.067
Pardlugu+ Draslute 0.897 0.75 0.820 0.103 0.05 0.072
Pardpull+ Pardlugu+ Draslute 0.897 0.75 0.820 0.103 0.05 0.072
Haplumbr+ Micapuli 0.889 0.75 0.816 0.111 0.01 0.105
Pardpull+ Haplumbr+ Micapuli 0.889 0.75 0.816 0.111 0.01 0.105

Table 4
Species abbreviations.

Abbreviation Species Group

Achimill Achillea millefolium Plants
Alopprat Alopecurus pratensis Plants
Amarcomm Amara communis Carabidae
Amarpleb Amara plebeja Carabidae
Amarsimi Amara similata Carabidae
Coccsept Coccinella septempunctata Coccinellidae
Dicynigr Dicymbium nigrum Araneae
Draslute Drassyllus lutetianus Araneae
Draspusi Drassyllus pusillus Araneae
Dysderyt Dysdera erythrina Araneae
Erigatra Erigone atra Araneae
Haplumbr Haplodrassus umbratilis Araneae
Harptard Harpalus tardus Carabidae
Isotviri Isotoma viridis Collembola
Lepicyan Lepidocyrtus cyaneus Collembola
Lepipara Lepidocyrtus paradoxus Collembola
Lepttenu Lepthyphantes tenuis Araneae
Melamell Melanostoma mellinum Syrphidae
Micapuli Micaria pulicaria Araneae
Nebrbrev Nebria brevicollis Carabidae
Panabipu Panagaeus bipustulatus Carabidae
Pardlugu Pardosa lugubris Araneae
Pardnigr Pardosa nigriceps Araneae
Pardpull Pardosa pullata Araneae
Ptermela Pterostichus melanarius Carabidae
Sminaure Sminthurinus aureus Collembola
Sphapumi Sphaeridia pumilis Collembola
Synuviva Synuchus vivalis Carabidae
Trecquad Trechus quadristriatus Carabidae
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The evidence (a priori probabilities for the events IG1= {0,1}) can
be calculated using the rule of total probability. A priori probabilities
(e.g. for Jülich) for the system states of G (priors) were calculated from
the total number of sites and the number of undisturbed sites
(PJ(G= 0)= 1/6) as well as disturbed sites (PJ(G=1)=5/6). From
Table 2 it can be concluded that the probability of observing the top
negative indicator Nebria brevicollis in a disturbed site in Jülich is
PJ(IG1=1|G=1)=0.8 (B), and the probability that this indicator
will be observed in an undisturbed site is (PJ(IG1= 1|G=0)= 0.5.
The evidence for Jülich (a priori probability for the event
{IG1=0}=non-occurrence of the indicator) can thus be calculated
according to (2) as PJ(IG1= 0)= (1–0.8) * 5/6+ (1–0.5) * 1/
6= 0.250. The evidence for the top negative indicators in Leipzig
(Amara similata) and Würzburg (Melanostoma mellinum) can be calcu-
lated as PL(IG1= 0)= 0.208 and PW(IG1= 0)=0.167, respectively.

Using Bayesian identity the posterior probability for a site belonging
to the disturbed class (G= 1) although the characteristic indicator for
disturbance has not been observed (IG1= 0), that is the misclassifica-
tion rate under the given conditions, can be calculated for Jülich
as PJ(G= 1|IG1=0)=1− P(IG1=1|G=1) * P(G=1)/P(IG1=0)
= (1–0.8) * 5/6/0.250= 0.667 and PL(G=1|IG1=0)= 0.401 and
PW(G=1|IG1=0)=0.250, respectively.

3.3. Simulation studies to optimize misclassification rate

In scenario 1, the number of undisturbed sites (=the prior prob-
ability of undisturbed sites P(G= 0)) was increased (see Fig. 2). To
reduce the misclassification rate to less than 10%, the number of

undisturbed site would have to be increased to at least 73 in Jülich, 25
in Leipzig and 13 in Würzburg (under the otherwise constant condition
of 20 disturbed sites per macrochore). In scenario 2, the sensitivity B of
indicators for disturbed conditions in disturbed sites (=the posterior
probability P(IG1= 1|G=1)) was increased (see Fig. 3). Given the
frame conditions (priors) at hand (4 undisturbed sites and 20 disturbed
sites), the sensitivity of the indicator for disturbed conditions in dis-
turbed sites would have to be increase to at least 99% in Jülich, Leipzig
and Würzburg in order to reduce the misclassification rate to less than
10%. Finally, in scenario 3 the sensitivity B of indicators for disturbed
conditions in undisturbed sites (=the posterior probability P
(IG1=1|G=0)) was reduced (see Fig. 4). Even when reducing the
sensitivity of indicators of disturbed conditions in undisturbed sites to
zero, a desirable misclassification rate less than 10% cannot be
achieved in Jülich, Leipzig and Würzburg.

4. Discussion

From the calculation of Bayesian evidence, it is obvious that the
probability of not observing the selected indicators for disturbance is
low at all three macrochores (PJ(IG1=0)=0.250,
PL(IG1= 0)=0.208, PW(IG1=0)=0.167). Ecologically this is not a
surprise as it is known that ecological disturbance (landscape-scale
simplification and in-field intensification) promotes biotic homo-
genization and the occurrence of more generalist species (Ekroos et al.,
2010; Gámez-Virués et al., 2015; Vellend et al., 2007).

For the undisturbed sites it is assumed that a disturbance (e.g.
pesticide impact) can be ruled out, thus the indicators for disturbance

Fig. 2. Simulations for reducing the misclassification rate P(G=1|IG1= 0) for Scenario 1: Increasing the number of undisturbed sites (=increasing P(G=0)) (solid
lines: given number of undisturbed sites= 4 and resulting misclassification rate, dashed lines: acceptable misclassification rate of 10% and needed number of
undisturbed sites).

Fig. 3. Simulations for reducing the misclassification rate P(G=1|IG1= 0) for Scenario 2: Increasing the sensitivity of the indicators for disturbed conditions in
disturbed sites (=increase of the posterior probability P(IG1= 1|G=1)) (solid lines: given sensitivity and resulting misclassification rate, dashed lines: acceptable
misclassification rate of 10% and needed sensitivity).
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should not be observed in this class (event {IG1=0}). For the dis-
turbed sites a disturbance (e.g. pesticide impact) can at least not be
ruled out, so the indicators should be observed (event {IG1=1}). So,
from the ecological point of view the question posed to the probabilistic
network could be expressed as: “What is the probability that within the
investigated site a potential pesticide effect exists, but was overlooked?” This
probability was calculated to be P(G=1|IG1=0)= 0.667 for Jülich
and 0.401 and 0.250 for Leipzig and Würzburg respectively. From these
results it can be concluded that the probability that randomly chosen
sites belong to the class of disturbed sites, although the indicators for
disturbance were not observed (misclassification (P(G=1|IG1=0).
This means that a potential pesticide impact was overlooked about 67%
of the time at Jülich, 40% at Leipzig and 25% at Würzburg. If the stated
indicators for disturbance should be used for environmental mon-
itoring, such a high magnitude of misclassification is not acceptable.

The simulation studies showed that theoretically it is possible to
reduce the misclassification rate to less than 10%. Although the prior
probability for undisturbed sites reflects a fixed characteristic of the
landscape under investigation, which cannot be changed in practice,
the simulation study manipulating the numbers of undisturbed sites is
helpful from two perspectives. First, finding undisturbed conditions in a
field study is a very time-consuming process and takes much longer
than finding sites under disturbed conditions. This is particularly the
situation for highly fragmented agricultural landscapes. More un-
disturbed sites may be found, so the ratio of undisturbed to disturbed
sites would have to be reconsidered. This is an important cost-benefit
aspect in ecological risk studies influencing misclassification rates.
Secondly, the availability of undisturbed sites depends on the landscape
under investigation. In more intensively used landscapes the chance of
finding undisturbed conditions is smaller than in extensively used
landscapes. So, prior probabilities should not be taken for granted when
moving to another investigation area because this landscape char-
acteristic triggers the misclassification rate via the prior probability. In
this study the number of undisturbed sites would have to be increased
to over 73 in Jülich, 25 in Leipzig and 13 in Würzburg (see Fig. 2)
assuming the indicator values are constant and independent from
sample size (as an equalized group size was used). In the attempt to
develop indicators such a large number of undisturbed sites would not
be manageable. This is not only because financial resources are mostly
limited, but also because often it is not possible to find such a large
number of undisturbed sites in the field. Nevertheless, the scenario
gives a good feeling about how far we are often away from reasonable
indication of disturbance using indicators for a disturbance.

Additionally, to the increase of the number of undisturbed sites, the
misclassification rate can be reduced by enhancing the sensitivity of the
disturbance indicators (see Fig. 3). This goal could be achieved by se-
lecting more representative indicators for disturbance conditions. To do

so, would increase the sensitivity of the indicators. The sensitivity
would have to be increased to at least 99%, but this improvement is less
effective than increasing the number of undisturbed sites. Due to the
weighting with the class sizes in the Bayesian evidence, reducing the
sensitivity of indicators of disturbed conditions in undisturbed sites has
only little effect on the misclassification rate. Additional use of a larger
number of undisturbed sites (see scenario 1) would considerably reduce
this effort. A larger number of sampling sites would also increase the
reliability of the significance test on the indicator values. A ratio of 30
undisturbed sites to 70 disturbed sites would be recommended to get
reliable p-values from the non-parametric bootstrap in this study (De
Cáceres and Legendre, 2009).

In Würzburg the misclassification rate cannot be optimized by
choosing a different indicator (see Table 2). In Leipzig the 2nd best
indicator Amara communis could be chosen which would result in a
misclassification rate that is the same as for Würzburg (0.250 instead of
0.401). This indicator has a slightly larger sensitivity for disturbed
conditions (P(IG1=1|G=1)), but a smaller indicator value and po-
sitive predictive value for the disturbed class (P(G=1|IG1=1)). Thus
the reduction in misclassification rates comes with an increased un-
certainty when assigning a newly observed site to the class of disturbed
sites. In Jülich the 2nd best indicator could be chosen instead, i.e.
Nebria brevicollis+ Trechus quadristriatus. Although this indicator has a
lower indicator value (0.814 instead of 0.854) and a lower sensitivity in
the disturbed class (P(IG1= 1|G=1)= 0.7 instead of 0.8), it has a
smaller sensitivity for the undisturbed class (P(IG1= 1|G=0)= 0.25
instead of 0.5). This results overall in the same misclassification rate as
for Nebria brevicollis (0.67). Moreover, this indicator has a larger posi-
tive predictive value for the disturbed class P(G=1|IG1=1)= 0.947
instead of 0.941), which reduces the uncertainty when assigning a
newly observed site using this indicator. The fact that multiple in-
dicators (species combinations and communities) can have higher po-
sitive predictive values than species taken independently has already
been pointed out before (De Cáceres et al., 2012; Frampton, 1997).

Nevertheless, increasing the dimensionality of the indicator can
increase the estimation error of the statistical model (see Fig. 5 top left).
This fact is in concordance with the general modelling principle of
Ockham's razor, a parsimony principle that demands the preference of
more simple models over complex ones to keep the estimation error low
and thus insure the generalization potential of models, at least for
Bayesian statistical models (Jefferys and Berger, 1992; Rasmussen and
Ghahramani, 2001). Conversely, a lower number of species within the
indicator is disadvantageous from the view of ecological methodology.
The risk of a false-negative result increases disproportionately with a
lower number of integrated species, as overlooking a species during
field sampling has a large influence on the sampling error (the deduc-
tion error, see Fig. 5 top right). By combining both aspects (estimation

Fig. 4. Simulations for reducing the misclassification rate P(G=1|IG1= 0) for Scenario 3: Decreasing the sensitivity of the indicators for disturbed conditions in
undisturbed sites (=decrease of the posterior probability P(IG1=1|G=0)) (solid lines: given sensitivity and resulting misclassification rate, dashed line: acceptable
misclassification rate of 10%).
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error and deduction error) it is possible to derive an optimal di-
mensionality of the indicator to find an optimal model complexity with
minimal residual error to reduce the misclassification rate P
(G=1|IG1=0) (see Fig. 5 bottom).

Finally, one can focus not on the indication of disturbance (‘negative
indicators’, see Table 2), but on the indication of undisturbed condi-
tions (‘positive indicators’, see Table 3). In this case it can be stated that
when indicators for undisturbed conditions are not found a disturbance
cannot be ruled out. This approach works much better because ecolo-
gical indicators for undisturbed conditions can be assumed to be more
specific to environmental conditions (specialists) than indicators for
disturbance (generalists). In this case the misclassification rate can
simply be calculated as the probability of the site belonging to the
disturbed class although the indicator for undisturbed conditions (IG0)
has been observed (P(G=1|IG0= 1)=1-P(G=0|IG0= 1), Type I-
error, see Table 1). In indicator analysis this probability is readily given
by the positive predictive value for the best indicator of undisturbed
conditions in the disturbed sites. In our example Harpalus
tardus+ Trechus quadristriatus+ Lepidocyrtus paradoxus for Jülich,
Amara plebeja+ Erigone atra+ Isotoma viridis for Leipzig and Pardosa
pullata+ Pardosa lugubris+Micaria pulicaria for Würzburg can be
chosen as indicators for undisturbed conditions resulting in mis-
classification rates of 3.2%, 5.4% and 4.8%, respectively (see Table 3).

5. Conclusions

Given the results, it is concluded that when attempting to detect
disturbance or the presence of a potential stressor the development and
use of indicators for disturbance (‘negative indicators’) is not an optimal
practice, despite this being used in many ecological assessment ap-
proaches. In our application, uncertainty about the question whether a
given site belongs to the class of undisturbed references equals the
misclassification rate (Type II-error, β-error, false negatives). It is sug-
gested as an additional measure of indicator quality (besides A, B and
Indval), but proved to be very large and difficult to control. This re-
sulted from the fact that the indicators for disturbance were developed
using a much lower number of undisturbed sites than disturbed sites. To

reduce the misclassification rate one could select disturbance indicators
with reduced occurrence in undisturbed sites (B(G=0)), which is
generally difficult because indicators of disturbance are often ubiqui-
tous species (generalists) and can show a strong increase under dis-
turbance and landscape management intensification (Cordeiro et al.,
2014; Gámez-Virués et al., 2015; Ottermanns, 2008; Rainio and
Niemelä, 2003; Rob-Nickoll et al., 2004). Alternatively, the number of
undisturbed sites could be increased to very large numbers, which is
often impossible because there are not so many undisturbed sites
available, especially in the case of agrarian habitats. Not finding an
indicator can result from many things, e.g. sampling efficiency or po-
pulation dynamics. Sampling efficiency can be increased by setting up
more relevés or traps in disturbed sites when developing indicators, but
this solution may also be limited, e.g. by the much discussed issue of
pseudoreplication (Hargrove and Pickering, 1992; Hurlbert, 1984;
Schank and Koehnle, 2009).

When focussing on indicators of undisturbed conditions (‘positive
indicators’), instead of indicators for disturbance, the misclassification
rate equals a Type I-error (α-error, false positives) which is much easier
to control. Besides the fact that misclassification rates are much lower
than in the case of disturbance indicators, these indicators are multiple
indicators (like most of the indicators from the list). The chance of
overlooking an indicator (sampling error) is thereby reduced.
Additionally, these indicators often consist of species from different
organism groups, feeding types or other trait groups. This makes them
much more robust and relevant from the ecological point of view. Last
but not least it can be chosen from a much larger set of indicators, so it
is more likely that these indicators will also work on a different set of
sites.

Additionally to the well-known ecological arguments, statistical
evidence is provided showing that it is better to use indicators for the
reference conditions (‘positive indicators’) than to use indicators for
disturbance (‘negative indicators’) in the attempt to detect disturbance
at a site as a deviation from a preferable state. What we desperately
need to do this efficiently in practice are good ideas about local re-
ference conditions for focal regions in terms of environmental variables
as well as typical species compositions (Carignan and Villard, 2002;
Ottermanns et al., 2010; Ratte et al., 2005). Our results show that a
carefully balanced study design is needed when using an indicator-
based classification system in environmental risk assessment and that
suitable reference sites are essential for sound decision making.
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