#   _____  ____    ___    ____
#  / ___/ / __ \  / _ \  / __/
# / /__  / /_/ / / ___/ / _/  
# \___/  \____/ /_/    /___/  
# Translate data to knowledge
Image: Logo Institute for Environmental Research

RESEARCH: Profile, Projects, Publications
TEACHING: Courses, Supervision
DATA LAB: Seminars, Presentations, Meet us
NETWORK: Team, Partners, Funding
ABOUT: Contact, Impressum

This page was carefully designed to make it distraction free and most accessible to individuals with disabilities following the Web Content Accessibility Guidelines (WCAG). Please report any problems. The content is optimized for text-based browsing with Lynx or w3m and free of cookies and javascript. Last update 01.12.2023. Mailto: RiO


>> GotoMenu

The working group Computational Ecotoxicology at the Institute for Environmental Research focuses on complexity in structures and processes of hierarchical dynamical bio-systems. We develop statistical, machine learning and AI-based algorithms and methods for multivariate modeling, pattern recognition, causal analysis and prediction in life-science disciplines like ecology, ecotoxicology and biomedical research. To link available lines of evidence (i.e. theory, simulation and observation) techniques from statistical pattern recognition, machine learning, data mining and bioinformatics as well as approaches from complex systems theory and chaos theory are used in a wide field of applications. More detailed attention is paid to non-linear dynamics, self-organization processes, the role of information and entropy, the integration of expert knowledge into modelling processes as well as epistemological consequences.

In our most recent research we apply the developed methods in questions about:

Special long-term research questions we are interested in are:

Understanding of patterns and processes in living systems requires a flexible range of data analysis techniques. Simulation using mathematical models, statistics and theoretical analysis of model equations are important generic tools to interpret and underpin results from lab and field observations. These in-silico-experiments are equally relevant to setting up and analysing laboratory experiments. They allow integration of empirical observations and theoretical models to generate and test multifactorial hypotheses. Such a system-oriented approach helps to elucidate structures, processes and dynamics in complexly interacting biological systems, e.g. ecological communities, gene expression networks and the immune system.

For further details see the projects section. Here you can download a short COPE working group profile.

Animated Gif: A neural network showing different activation patterns from a carabid assemblage data set Png: A species community network in a tropical forest regeneration site, showing trophic interaction structure Animated Gif: An error optimization algorithm gets trapped in a local minimum Png: A wordle, displaying important research topics (all figures copyright R. Ottermanns) Animated Gif: PCA analysis of phytoplankton communities in a mesocosm experiment, showing temporal trajectories of community composition (red: control, blue: treatment)
From left to right: A neural network showing different activation patterns from a carabid assemblage data set, a species community network in a tropical forest regeneration site with hierachical trophic structure, an error optimization algorithm gets trapped in a local minimum, a wordle displaying important working group topics, a PCA analysis of phytoplankton communities in a mesocosm experiment (showing temporal trajectories of community composition, red: control, blue: treatment) (All Figs. (c) R. Ottermanns)

RESEARCH: Projects

>> GotoMenu




RESEARCH: Publications

>> GotoMenu

Peer reviewed journals:

Books & chapters:

Lecture notes:

Technical reports:

Oral presentations:

Poster presentations:



>> GotoMenu

For details about courses please go to RWTH Online. All courses are taught in German, English on request.

Summer semester:

Winter semester:

TEACHING: Supervision

>> GotoMenu



DATA LAB: Seminars

>> GotoMenu

Methodological Seminar in Data Science and Machine Learning

The methodological seminar is meant to inform about actual methods everyone can use in her/his scientific work. It is a professional training for the working group members but also for all interested people from the institute. Topics are developed at the moment. Exact dates will be published when a topic is ready to run. If you want to join one of the topics please register by sending an e-mail to

In preparation/on schedule:

DATA LAB: Presentations

>> GotoMenu

Official presentations are given in the institute seminar or the working group colloqium. TechTalks are a more informal way to present project ideas, discus methods, related problems or astounding findings with your collegues. Feel free to choose your favorite way of presentation. Use slides, meditative speed dating or a dada performance. According to Paul Feyerabend: Anything goes.

DATA LAB: Meet us

>> GotoMenu


>> GotoMenu

Ottermanns, Richard, Dr. rer. nat. Dipl.-Ing. Dipl.-Biol.

Photo: Richard Ottermanns

Actual bibliometrics Web of Science/Google Scholar (30.11.2023):

Room: 110
Tel: +49-241-8026688
Mail: ottermanns(at)ifer(dot)rwth-aachen(dot)de
Office hours: On appointment
Business card: download

Brings, Sebastian, BSc

Photo: Sebastian Brings

Room: 105
Tel: +49-241-8023693
Fax: +49-241-8022182
Mail: sebastian(dot)brings(at)bio5(dot)rwth-aachen(dot)de

Byun, Jaegyun, MSc

Photo: Jaegyun Byun

Mail: jaegyun(dot)byun(at)bio5(dot)rwth-aachen(dot)de

Frings, Luca

Photo: Luca Frings

Mail: luca(dot)frings(at)bio5(dot)rwth-aachen(dot)de

Lange, Jaqueline, BSc

Photo: Jaqueline Lange

Room: 160
Tel: +49-241-8025636
Fax: +49-241-8022182
Mail: jaqueline(dot)lange(at)bio5(dot)rwth-aachen(dot)de

Schröder, Katja, MSc

Photo: Katja Schröder

Room: 105
Tel: +49-241-8026698
Fax: +49-241-8022182
Mail: katja(dot)schroeder(at)bio5(dot)rwth-aachen(dot)de

Sybertz, Alexandra, MSc

Photo: Alexandra Sybertz

Room: 106
Tel: +49-241-8025237
Fax: +49-241-8022182
Mail: alexandra(dot)sybertz(at)bio5(dot)rwth-aachen(dot)de

Torringen, Volker

Photo: Volker Torringen

Room: 105
Tel: +49-241-8026698
Fax: +49-241-8022182
Mail: v(dot)torringen(at)bio5(dot)rwth-aachen(dot)de

NETWORK: Partners

>> GotoMenu

Recent projects:

Former projects:

NETWORK: Funding

>> GotoMenu

ABOUT: Contact

>> GotoMenu

Dr. rer. nat. Dipl.-Ing. Richard Ottermanns
Computational Ecotoxicology (COPE)
Institute for Environmental Research (IFER)
Department of Ecology & Computational Life Science
RWTH Aachen University
Kackertstraße 10
D-52072 Aachen

Room: 110
Tel: +49-241-8026688
Fax: +49-241-8022182
Mail: ottermanns(at)ifer(dot)rwth-aachen(dot)de
Business card: download

ABOUT: Impressum

>> GotoMenu


Herausgegeben im Auftrag des Rektors der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen.

RWTH Aachen

Templergraben 55

52062 Aachen (Hausanschrift)

52056 Aachen (Postanschrift)

Telefon: +49 241 80 1

Telefax: +49 241 80 92312


Die RWTH Aachen ist eine Körperschaft des öffentlichen Rechts. Sie wird durch den Rektor, Dr. rer. nat. Dr. h. c. mult., Univ.-Prof. Ulrich Rüdiger, vertreten.

Zuständige Aufsichtsbehörde

Ministerium für Kultur und Wissenschaft des Landes Nordrhein Westfalen, Völklinger Straße 49, 40221 Düsseldorf.


Gemäß § 27 a Umsatzsteuergesetz: DE 121689807

Inhaltliche Verantwortlichkeit

Ansprechpartner: Dr. Richard Ottermanns

Telefon: +49 241 80 26688

E-Mail: ottermanns(at)ifer(dot)rwth-aachen(dot)de

Webmaster: Dr. Richard Ottermanns

Telefon: +49 241 80 26688

E-Mail: ottermanns(at)ifer(dot)rwth-aachen(dot)de

Die Webseiten der Zentralen Hochschulverwaltung, der Zentralen Einrichtungen, der Gruppenvertretungen, der Institute, Lehrstühle sowie Lehr- und Forschungsgebiete werden von den von diesen beauftragten Webkoordinatorinnen und Webkoordinatoren beziehungsweise deren Webmastern eigenständig betreut. Details zu Fragen der Haftung sind in der Datenschutzerklärung nachzulesen.